Gaetano Stea
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gaetano Stea.
European Journal of Plant Pathology | 2004
Giuseppina Mulè; Antonia Susca; Gaetano Stea; Antonio Moretti
Fusarium proliferatum, F. subglutinans and F. verticillioides are the most important Fusarium species occurring on maize world-wide, capable of producing a wide range of mycotoxins which are a potential health hazard for animals and humans. The ribosomal internal transcribed spacer and a portion of the calmodulin gene were sequenced and analysed in order to design species-specific primers useful for diagnosis. The primer pairs were based on a partial calmodulin gene sequence. Three pairs of primers (PRO1/2, SUB1/2 and VER 1/2) produced PCR products of 585, 631 and 578bp for F. proliferatum, F. subglutinans and F. verticillioides, respectively. Primer specificity was confirmed by analyzing DNA of 150 strains of these species, mostly isolated from maize in Europe and USA. The sensitivity of primers was 12.5 pg when the pure total genomic DNA of each species was analyzed. The developed PCR assay should provide a powerful tool for the detection of toxigenic fungi in maize kernels.
International Journal of Systematic and Evolutionary Microbiology | 2008
Giancarlo Perrone; János Varga; Antonia Susca; Jens Christian Frisvad; Gaetano Stea; Sándor Kocsubé; Beáta Tóth; Zofia Kozakiewicz; Robert A. Samson
A novel species, Aspergillus uvarum sp. nov., is described within Aspergillus section Nigri. This species can be distinguished from other black aspergilli based on internal transcribed spacers (ITS), beta-tubulin and calmodulin gene sequences, by AFLP analysis and by extrolite profiles. Aspergillus uvarum sp. nov. isolates produced secalonic acid, common to other Aspergillus japonicus-related taxa, and geodin, erdin and dihydrogeodin, which are not produced by any other black aspergilli. None of the isolates were found to produce ochratoxin A. The novel species is most closely related to two atypical strains of Aspergillus aculeatus, CBS 114.80 and CBS 620.78, and was isolated from grape berries in Portugal, Italy, France, Israel, Greece and Spain. The type strain of Aspergillus uvarum sp. nov. is IMI 388523T=CBS 127591T=ITEM 4834T=IBT26606T.
Fems Microbiology Letters | 2004
Giuseppina Mulè; Antonia Susca; Gaetano Stea; Antonio Moretti
Fusarium proliferatum and Fusarium oxysporum are the causal agents of a destructive disease of asparagus called Fusarium crown and root rot. F. proliferatum from asparagus produces fumonisin B1 and B2, which have been detected as natural contaminants in infected asparagus plants. Polymerase chain reaction (PCR) assays were developed for the rapid identification of F. proliferatum and F. oxysporum in asparagus plants. The primer pairs are based on calmodulin gene sequences. The PCR products from F. proliferatum and F. oxysporum were 526 and 534 bp long, respectively. The assays were successfully applied to identify both species from the vegetative part of the plants.
European Journal of Plant Pathology | 2004
Giancarlo Perrone; Antonia Susca; Gaetano Stea; Giuseppina Mulè
Black Aspergilli, and in particular Aspergillus carbonarius, are the main causes of contamination of grapes and their by-products by ochratoxin A. A PCR-based method was developed to detect DNA of A. carbonarius and A. japonicus. Two pairs of primers (CARBO1/2 and JAPO1/2) designed from the calmodulin gene, produced PCR products of 371 and 583 bp for A. carbonarius and A. japonicus, respectively. Primer specificity was tested with DNA of 107 strains belonging to Aspergillus section Nigri isolated mostly from grapes in Europe. The sensitivity of primers CARBO1/2 and JAPO1/2 was 12.5 pg when using pure total genomic DNA of the two species. The developed primers provide a powerful tool for detection of the main ochratoxigenic producing Aspergillus species in grapes.
Journal of Agricultural and Food Chemistry | 2010
Antonia Susca; Robert H. Proctor; Giuseppina Mulè; Gaetano Stea; Alberto Ritieni; Antonio Logrieco; Antonio Moretti
Aspergillus niger is a significant component of the fungal community on grapes. The mycotoxin fumonisin B2 (FB2) was recently detected in grape must and wine as well as in cultures of some A. niger strains isolated from grapes and raisins. This study examined 48 strains of Aspergillus section Nigri for the presence of the fumonisin biosynthetic gene fum8 in relation to FB2 production. The fum8 gene was detected in only 11 A. niger strains, 9 of which also produced FB2. Maximum parsimony analysis based on the calmodulin gene sequence indicated that the presence/absence of fum8 is not correlated with the phylogenetic relationship of the isolates. This is the first report correlating the presence of a fumonisin biosynthetic gene with fumonisin production in A. niger from an important food crop. The results suggest that the absence of FB2 production in grape isolates of A. niger can result from the absence of at least one gene essential for production.
Molecular Microbiology | 2013
Robert H. Proctor; François Van Hove; Antonia Susca; Gaetano Stea; Mark Busman; Theo van der Lee; Cees Waalwijk; Antonio Moretti; Todd J. Ward
Fumonisins are a family of carcinogenic secondary metabolites produced by members of the Fusarium fujikuroi species complex (FFSC) and rare strains of Fusarium oxysporum. In Fusarium, fumonisin biosynthetic genes (FUM) are clustered, and the cluster is uniform in gene organization. Here, sequence analyses indicated that the cluster exists in five different genomic contexts, defining five cluster types. In FUM gene genealogies, evolutionary relationships between fusaria with different cluster types were largely incongruent with species relationships inferred from primary‐metabolism (PM) gene genealogies, and FUM cluster types are not trans‐specific. In addition, synonymous site divergence analyses indicated that three FUM cluster types predate diversification of FFSC. The data are not consistent with balancing selection or interspecific hybridization, but they are consistent with two competing hypotheses: (i) multiple horizontal transfers of the cluster from unknown donors to FFSC recipients and (ii) cluster duplication and loss (birth and death). Furthermore, low levels of FUM gene divergence in F. bulbicola, an FFSC species, and F. oxysporum provide evidence for horizontal transfer of the cluster from the former, or a closely related species, to the latter. Thus, uniform gene organization within the FUM cluster belies a complex evolutionary history that has not always paralleled the evolution of Fusarium.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2007
Antonia Susca; Gaetano Stea; Giuseppina Mulè; Giancarlo Perrone
Aspergillus niger and A. tubingensis, species belonging to section Nigri, are commonly found in plant products and processed food, such as grapes, cereals, coffee, and derived products. These two species are very difficult to differentiate by classical morphological criteria and some isolates are known to produce ochratoxin A. The exact identification of these two species is very important to avoid the overestimation of toxicological contamination and related risks. A polymerase chain reaction (PCR)-based identification and detection assay was developed as a tool to identify A. niger and A. tubingensis, using molecular differences obtained by sequencing the calmodulin gene. Two pairs of species-specific primers were designed and empirically evaluated for PCR identification of A. niger and A. tubingensis. Species-specific PCR products generated by each primer set were 505 bp (A. tubingensis) and 245 bp (A. niger) in length, which could be potentially useful for a multiplex PCR assay. The sensitivity of this assay was about 10 pg DNA in a 25-µl PCR reaction volume, using pure total DNA of the two species. The method described in this study represents a rapid and reliable procedure to assess the presence in food products of two ochratoxigenic species of section Nigri.
IMA Fungus | 2012
Željko Jurjević; Stephen W. Peterson; Gaetano Stea; Michele Solfrizzo; János Varga; Vit Hubka; Giancarlo Perrone
Aspergillus floridensis and A. trinidadensis spp. nov. are described as novel uniseriate species of Aspergillus section Nigri isolated from air samples. To describe the species we used phenotypes from 7-d Czapek yeast extract agar culture (CYA), creatine agar culture (CREA) and malt extract agar culture (MEA), with support by molecular analysis of the β-tubulin, calmodulin, RNA polymerase II (RPB2), and translation elongation factor-alpha (TEF) gene amplified and sequenced from 56 air isolates and one isolate from almonds belonging to Aspergillus sectionNigri. Aspergillus floridensis is closely related to A. aculeatus, and A. trinidadensis is closely related to A. aculeatinus. Aspergillus brunneoviolaceus (syn. A. fijiensis) and A. uvarum are reported for the first time from the USA and from the indoor air environment. The newly described species do not produce ochratoxin A.
International Journal of Food Microbiology | 2011
Vincenzina Fusco; Grazia Marina Quero; Gaetano Stea; Maria Morea; Angelo Visconti
An extensive use of Weissella (W.) confusa is currently being made for the production of a variety of fermented foods and beverages although some strains of this species have emerged as opportunistic pathogens for humans and animals. Nevertheless, no rapid methods are available for the reliable identification of W. confusa. We developed a novel PCR using AFLP (Amplified Fragment Length Polymorphism)-derived primers for the rapid and unequivocal identification of W. confusa. Fluorescent AFLP of 30 strains of W. confusa, Leuconostoc citreum, Lactobacillus (Lb.) brevis, Lb. rossiae, Lb. plantarum and Lb. buchneri allowed us to detect, purify and sequence several W. confusa specific AFLP fragments. The homology search in BLAST of a 303 bp nucleotide sequence revealed a ≤ 77% identity of the purified fragment with the lepA gene of several lactic acid bacteria. A PCR assay targeting 225 bp of this fragment was developed and tested against the DNA of 109 strains, including 34 foodborne and clinical W. confusa and 75 strains of 47 phylogenetically closely and distantly related species, resulting in 100% specificity with a detection limit of 16 pg. Being the first species-specific PCR to date developed for the rapid and unambiguous identification of W. confusa, this novel assay could be a reliable and efficient tool for detecting W. confusa not only in food and beverages, but also in clinical specimens, thus contributing to clarify its real significance in human and animal infections.
Fungal Genetics and Biology | 2014
Antonia Susca; Robert H. Proctor; R. A. E. Butchko; Miriam Haidukowski; Gaetano Stea; Antonio Logrieco; Antonio Moretti
The ability to produce fumonisin mycotoxins varies among members of the black aspergilli. Previously, analyses of selected genes in the fumonisin biosynthetic gene (fum) cluster in black aspergilli from California grapes indicated that fumonisin-nonproducing isolates of Aspergillus welwitschiae lack six fum genes, but nonproducing isolates of Aspergillus niger do not. In the current study, analyses of black aspergilli from grapes from the Mediterranean Basin indicate that the genomic context of the fum cluster is the same in isolates of A. niger and A. welwitschiae regardless of fumonisin-production ability and that full-length clusters occur in producing isolates of both species and nonproducing isolates of A. niger. In contrast, the cluster has undergone an eight-gene deletion in fumonisin-nonproducing isolates of A. welwitschiae. Phylogenetic analyses suggest each species consists of a mixed population of fumonisin-producing and nonproducing individuals, and that existence of both production phenotypes may provide a selective advantage to these species. Differences in gene content of fum cluster homologues and phylogenetic relationships of fum genes suggest that the mutation(s) responsible for the nonproduction phenotype differs, and therefore arose independently, in the two species. Partial fum cluster homologues were also identified in genome sequences of four other black Aspergillus species. Gene content of these partial clusters and phylogenetic relationships of fum sequences indicate that non-random partial deletion of the cluster has occurred multiple times among the species. This in turn suggests that an intact cluster and fumonisin production were once more widespread among black aspergilli.