Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaia Gestri is active.

Publication


Featured researches published by Gaia Gestri.


Blood | 2010

Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction

Alessandro Fantin; Joaquim M. Vieira; Gaia Gestri; Laura Denti; Quenten Schwarz; Sergey Prykhozhij; Francesca Peri; Stephen W. Wilson; Christiana Ruhrberg

Blood vessel networks expand in a 2-step process that begins with vessel sprouting and is followed by vessel anastomosis. Vessel sprouting is induced by chemotactic gradients of the vascular endothelial growth factor (VEGF), which stimulates tip cell protrusion. Yet it is not known which factors promote the fusion of neighboring tip cells to add new circuits to the existing vessel network. By combining the analysis of mouse mutants defective in macrophage development or VEGF signaling with live imaging in zebrafish, we now show that macrophages promote tip cell fusion downstream of VEGF-mediated tip cell induction. Macrophages therefore play a hitherto unidentified and unexpected role as vascular fusion cells. Moreover, we show that there are striking molecular similarities between the pro-angiogenic tissue macrophages essential for vascular development and those that promote the angiogenic switch in cancer, including the expression of the cell-surface proteins TIE2 and NRP1. Our findings suggest that tissue macrophages are a target for antiangiogenic therapies, but that they could equally well be exploited to stimulate tissue vascularization in ischemic disease.


Development | 2003

Specification of the vertebrate eye by a network of eye field transcription factors.

Michael E. Zuber; Gaia Gestri; Andrea S. Viczian; Giuseppina Barsacchi; William A. Harris

Several eye-field transcription factors (EFTFs) are expressed in the anterior region of the vertebrate neural plate and are essential for eye formation. The Xenopus EFTFs ET, Rx1, Pax6, Six3, Lhx2, tll and Optx2 are expressed in a dynamic, overlapping pattern in the presumptive eye field. Expression of an EFTF cocktail with Otx2 is sufficient to induce ectopic eyes outside the nervous system at high frequency. Using both cocktail subsets and functional (inductive) analysis of individual EFTFs, we have revealed a genetic network regulating vertebrate eye field specification. Our results support a model of progressive tissue specification in which neural induction then Otx2-driven neural patterning primes the anterior neural plate for eye field formation. Next, the EFTFs form a self-regulating feedback network that specifies the vertebrate eye field. We find striking similarities and differences to the network of homologous Drosophila genes that specify the eye imaginal disc, a finding that is consistent with the idea of a partial evolutionary conservation of eye formation.


Development | 2005

Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression.

Gaia Gestri; Matthias Carl; Irene Appolloni; Stephen W. Wilson; Giuseppina Barsacchi; Massimiliano Andreazzoli

Although it is well established that Six3 is a crucial regulator of vertebrate eye and forebrain development, it is unknown whether this homeodomain protein has a role in the initial specification of the anterior neural plate. In this study, we show that exogenous Six3 can expand the anterior neural plate in both Xenopus and zebrafish, and that this occurs in part through Six3-dependent transcriptional regulation of the cell cycle regulators cyclinD1 and p27Xic1, as well as the anti-neurogenic genes Zic2 and Xhairy2. However, Six3 can still expand the neural plate in the presence of cell cycle inhibitors and we show that this is likely to be due to its ability to repress the expression of Bmp4 in ectoderm adjacent to the anterior neural plate. Furthermore, exogenous Six3 is able to restore the size of the anterior neural plate in chordino mutant zebrafish, indicating that it has the ability to promote anterior neural development by antagonising the activity of the BMP pathway. On its own, Six3 is unable to induce neural tissue in animal caps, but it can do so in combination with Otx2. These results suggest a very early role for Six3 in specification of the anterior neural plate, through the regulation of cell proliferation and the inhibition of BMP signalling.


Development | 2003

Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate

Massimiliano Andreazzoli; Gaia Gestri; Federico Cremisi; Simona Casarosa; Igor B. Dawid; Giuseppina Barsacchi

In Xenopus neuroectoderm, posterior cells start differentiating at the end of gastrulation, while anterior cells display an extended proliferative period and undergo neurogenesis only at tailbud stage. Recent studies have identified several important components of the molecular pathways controlling posterior neurogenesis, but little is known about those controlling the timing and positioning of anterior neurogenesis. We investigate the role of Xrx1, a homeobox gene required for eye and anterior brain development, in the control of proliferation and neurogenesis of the anterior neural plate. Xrx1 is expressed in the entire proliferative region of the anterior neural plate delimited by cells expressing the neuronal determination gene X-ngnr-1, the neurogenic gene X-Delta-1, and the cell cycle inhibitor p27Xic1. Positive and negative signals position Xrx1 expression to this region. Xrx1 is activated by chordin and Hedgehog gene signaling, which induce anterior and proliferative fate, and is repressed by the differentiation-promoting activity of neurogenin and retinoic acid. Xrx1 is required for anterior neural plate proliferation and, when overexpressed, induces proliferation, inhibits X-ngnr-1, X-Delta-1 and N-tubulin and counteracts X-ngnr-1- and retinoic acid-mediated differentiation. We find that Xrx1 does not act by increasing lateral inhibition but by inducing the antineurogenic transcriptional repressors Xhairy2 and Zic2, and by repressing p27Xic1. The effects of Xrx1 on proliferation, neurogenesis and gene expression are restricted to the most rostral region of the embryo, implicating this gene as an anterior regulator of neurogenesis.


Developmental Neurobiology | 2012

The Visual System of Zebrafish and its Use to Model Human Ocular Diseases

Gaia Gestri; Brian A. Link; Stephan C.F. Neuhauss

Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence, there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually driven behaviors in the newly hatched larvae. The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases. Here, we review the anatomy, physiology, and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases.


Molecular and Cellular Neuroscience | 2003

Xrx1 controls proliferation and multipotency of retinal progenitors.

Simona Casarosa; Marcos A Amato; Massimiliano Andreazzoli; Gaia Gestri; Giuseppina Barsacchi; Federico Cremisi

We investigated the function of Xrx1 during Xenopus retinogenesis. Xrx1 overexpression lengthens mitotic activity and ectopically activates the expression of markers of undifferentiated progenitors in the developing retina. We assayed Xrx1 ability to support proliferation with a cell-autonomous mechanism by in vivo lipofection of single retinal progenitors. Xrx1 overexpression increases clonal proliferation while Xrx1 functional inactivation exerts the opposite effect. We also compared the effects of Xrx1 with those of the cyclin-dependent kinase cdk2, a strong mitotic promoter. Despite the similar increase in clonal proliferation displayed by both factors, Xrx1 and cdk2 act differently on retinal cell fate determination. cdk2/cyclinA2 lipofected retinas show a decrease in early-born cell types as ganglion cells and cones and an increase in late-born types such as bipolar neurons. On the contrary, Xrx1 lipofected retinas show no changes in the proportions of the different cell types, thus suggesting a role in supporting multipotency of retinal progenitors.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Retinoic acid receptor signaling regulates choroid fissure closure through independent mechanisms in the ventral optic cup and periocular mesenchyme

Giuseppe Lupo; Gaia Gestri; Matthew O'Brien; Ross M. Denton; Roshantha A. S. Chandraratna; Steven V. Ley; William A. Harris; Stephen W. Wilson

Retinoic acid receptor (RAR) signaling is required for morphogenesis of the ventral optic cup and closure of the choroid fissure, but the mechanisms by which this pathway regulates ventral eye development remain controversial and poorly understood. Although previous studies have implicated neural crest–derived periocular mesenchyme (POM) as the critical target of RA action in the eye, we show here that RAR signaling regulates choroid fissure closure in zebrafish by acting on both the ventral optic cup and the POM. We describe RAR-dependent regulation of eight genes in the neuroepithelial cells of the ventral retina and optic stalk and of six genes in the POM and show that these ventral retina/optic stalk and POM genes function independently of each other. Consequently, RAR signaling regulates ventral eye development through two independent, nonredundant mechanisms in different ocular tissues. Furthermore, the identification of two cohorts of genes implicated in ventral eye morphogenesis may help to elucidate the genetic basis of ocular coloboma in humans.


Human Genetics | 2009

Reduced TFAP2A function causes variable optic fissure closure and retinal defects and sensitizes eye development to mutations in other morphogenetic regulators

Gaia Gestri; Robert J. Osborne; Alexander W. Wyatt; Dianne Gerrelli; Susan M. Gribble; Helen Stewart; Alan Fryer; David J. Bunyan; Katrina Prescott; J. Richard O. Collin; Tomas Fitzgerald; David O. Robinson; Nigel P. Carter; Stephen W. Wilson; Nicola Ragge

Mutations in the transcription factor encoding TFAP2A gene underlie branchio-oculo-facial syndrome (BOFS), a rare dominant disorder characterized by distinctive craniofacial, ocular, ectodermal and renal anomalies. To elucidate the range of ocular phenotypes caused by mutations in TFAP2A, we took three approaches. First, we screened a cohort of 37 highly selected individuals with severe ocular anomalies plus variable defects associated with BOFS for mutations or deletions in TFAP2A. We identified one individual with a de novo TFAP2A four amino acid deletion, a second individual with two non-synonymous variations in an alternative splice isoform TFAP2A2, and a sibling-pair with a paternally inherited whole gene deletion with variable phenotypic expression. Second, we determined that TFAP2A is expressed in the lens, neural retina, nasal process, and epithelial lining of the oral cavity and palatal shelves of human and mouse embryos—sites consistent with the phenotype observed in patients with BOFS. Third, we used zebrafish to examine how partial abrogation of the fish ortholog of TFAP2A affects the penetrance and expressivity of ocular phenotypes due to mutations in genes encoding bmp4 or tcf7l1a. In both cases, we observed synthetic, enhanced ocular phenotypes including coloboma and anophthalmia when tfap2a is knocked down in embryos with bmp4 or tcf7l1a mutations. These results reveal that mutations in TFAP2A are associated with a wide range of eye phenotypes and that hypomorphic tfap2a mutations can increase the risk of developmental defects arising from mutations at other loci.


PLOS ONE | 2012

MicroRNA 218 Mediates the Effects of Tbx5a Over-Expression on Zebrafish Heart Development

Elena Chiavacci; Luca Dolfi; Lorena Verduci; Francesco Meghini; Gaia Gestri; Alberto Mercatanti Monica Evangelista; Stephen W. Wilson; Federico Cremisi; Letizia Pitto

tbx5, a member of the T-box gene family, encodes one of the key transcription factors mediating vertebrate heart development. Tbx5 function in heart development appears to be exquisitely sensitive to gene dosage, since both haploinsufficiency and gene duplication generate the cardiac abnormalities associated with Holt−Oram syndrome (HOS), a highly penetrant autosomal dominant disease characterized by congenital heart defects of varying severity and upper limb malformation. It is suggested that tight integration of microRNAs and transcription factors into the cardiac genetic circuitry provides a rich and robust array of regulatory interactions to control cardiac gene expression. Based on these considerations, we performed an in silico screening to identify microRNAs embedded in genes highly sensitive to Tbx5 dosage. Among the identified microRNAs, we focused our attention on miR-218-1 that, together with its host gene, slit2, is involved in heart development. We found correlated expression of tbx5 and miR-218 during cardiomyocyte differentiation of mouse P19CL6 cells. In zebrafish embryos, we show that both Tbx5 and miR-218 dysregulation have a severe impact on heart development, affecting early heart morphogenesis. Interestingly, down-regulation of miR-218 is able to rescue the heart defects generated by tbx5 over-expression supporting the notion that miR-218 is a crucial mediator of Tbx5 in heart development and suggesting its possible involvement in the onset of heart malformations.


Cell Reports | 2015

NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells

Alessandro Fantin; Anastasia Lampropoulou; Gaia Gestri; Claudio Raimondi; Valentina Senatore; Ian Zachary; Christiana Ruhrberg

Summary Sprouting blood vessels are led by filopodia-studded endothelial tip cells that respond to angiogenic signals. Mosaic lineage tracing previously revealed that NRP1 is essential for tip cell function, although its mechanistic role in tip cells remains poorly defined. Here, we show that NRP1 is dispensable for genetic tip cell identity. Instead, we find that NRP1 is essential to form the filopodial bursts that distinguish tip cells morphologically from neighboring stalk cells, because it enables the extracellular matrix (ECM)-induced activation of CDC42, a key regulator of filopodia formation. Accordingly, NRP1 knockdown and pharmacological CDC42 inhibition similarly impaired filopodia formation in vitro and in developing zebrafish in vivo. During mouse retinal angiogenesis, CDC42 inhibition impaired tip cell and vascular network formation, causing defects that resembled those due to loss of ECM-induced, but not VEGF-induced, NRP1 signaling. We conclude that NRP1 enables ECM-induced filopodia formation for tip cell function during sprouting angiogenesis.

Collaboration


Dive into the Gaia Gestri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Quenten Schwarz

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Brian A. Link

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rongqiao He

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge