Gaia Pigino
University of Siena
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gaia Pigino.
Journal of Cell Biology | 2009
Gaia Pigino; Stefan Geimer; Salvatore Lanzavecchia; Eugenio Paccagnini; Francesca Cantele; Dennis R. Diener; Joel L. Rosenbaum; Pietro Lupetti
Ultrastructural study of Chlamydomonas cilia shows that anterograde IFT particles form trains that are long and narrow, while retrograde IFT form short, compact particle trains.
Journal of Cell Biology | 2011
Gaia Pigino; Khanh Huy Bui; Aditi Maheshwari; Pietro Lupetti; Dennis R. Diener; Takashi Ishikawa
Cryo-EM tomography of wild-type and mutant cilia and flagella from Tetrahymena and Chlamydomonas reveals new information on the substructure of radial spokes.
Journal of Structural Biology | 2012
Gaia Pigino; Aditi Maheshwari; Khanh Huy Bui; Chikako Shingyoji; Shinji Kamimura; Takashi Ishikawa
Although eukaryotic flagella and cilia all share the basic 9+2 microtubule-organization of their internal axonemes, and are capable of generating bending-motion, the waveforms, amplitudes, and velocities of the bending-motions are quite diverse. To explore the structural basis of this functional diversity of flagella and cilia, we here compare the axonemal structure of three different organisms with widely divergent bending-motions by electron cryo-tomography. We reconstruct the 3D structure of the axoneme of Tetrahymena cilia, and compare it with the axoneme of the flagellum of sea urchin sperm, as well as with the axoneme of Chlamydomonas flagella, which we analyzed previously. This comparative structural analysis defines the diversity of molecular architectures in these organisms, and forms the basis for future correlation with their different bending-motions.
Biodiversity and Conservation | 2007
Tancredi Caruso; Gaia Pigino; Fabio Bernini; Roberto Bargagli; Massimo Migliorini
Recent data on oribatid mites (Acari: Oribatida) indicates that Mediterranean soil communities tend to show uneven patterns of species abundance distribution (SAD) that are well fitted by a simple model such as the geometric series. In the case of linear distributions, the fraction of total sampled individuals that is contributed by the most abundant species, known as the Berger–Parker index, synthetically describes the SAD of disturbed communities. This study assessed the bioindicator potential of the Berger–Parker index by comparing its variations among Mediterranean oribatid assemblages under different types of soil disturbance. The index significantly changes between undisturbed and disturbed soils reaching the highest values in areas with strong physical disturbance due to agricultural management. The Berger–Parker index is therefore a practical and effective tool for monitoring biodiversity impairment linked to human disturbance in soil ecosystems.
Journal of Structural Biology | 2015
Ana Diaz; Barbora Malkova; Mirko Holler; Manuel Guizar-Sicairos; Enju Lima; Valérie Panneels; Gaia Pigino; Anne Greet Bittermann; Larissa Wettstein; Takashi Tomizaki; Oliver Bunk; Gebhard F. X. Schertler; Takashi Ishikawa; Roger Wepf; Andreas Menzel
We demonstrate absolute quantitative mass density mapping in three dimensions of frozen-hydrated biological matter with an isotropic resolution of 180 nm. As model for a biological system we use Chlamydomonas cells in buffer solution confined in a microcapillary. We use ptychographic X-ray computed tomography to image the entire specimen, including the 18 μm-diameter capillary, thereby providing directly an absolute mass density measurement of biological matter with an uncertainty of about 6%. The resulting maps have sufficient contrast to distinguish cells from the surrounding ice and several organelles of different densities inside the cells. Organelles are identified by comparison with a stained, resin-embedded specimen, which can be compared with established transmission electron microscopy results. For some identified organelles, the knowledge of their elemental composition reduces the uncertainty of their mass density measurement down to 1% with values consistent with previous measurements of dry weight concentrations in thin cellular sections by scanning transmission electron microscopy. With prospects of improving the spatial resolution in the near future, we expect that the capability of non-destructive three-dimensional mapping of mass density in biological samples close to their native state becomes a valuable method for measuring the packing of organic matter on the nanoscale.
American Journal of Respiratory Cell and Molecular Biology | 2016
Gerard W. Dougherty; Niki T. Loges; Judith A. Klinkenbusch; Heike Olbrich; Petra Pennekamp; Tabea Menchen; Johanna Raidt; Julia Wallmeier; Claudius Werner; Cordula Westermann; Christian Ruckert; Virginia Mirra; Rim Hjeij; Yasin Memari; Richard Durbin; Anja Kolb-Kokocinski; Kavita Praveen; Mohammad Amin Kashef; Sara Kashef; Fardin Eghtedari; Karsten Häffner; Pekka Valmari; György Baktai; Micha Aviram; Lea Bentur; Israel Amirav; Erica E. Davis; Nicholas Katsanis; Martina Brueckner; Artem Shaposhnykov
Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography.
Bioarchitecture | 2012
Gaia Pigino; Takashi Ishikawa
The radial spoke (RS) is a complex of at least 23 proteins that works as a mechanochemical transducer between the central‐pair apparatus and the peripheral microtubule doublets in eukaryotic flagella and motile cilia. The RS contributes to the regulation of the activity of dynein motors, and thus to flagellar motility. Despite numerous biochemical, physiological and structural studies, the mechanism of the function of the radial spoke remains unclear. Detailed knowledge of the 3D structure of the RS protein complex is needed in order to understand how RS regulates dynein activity. Here we review the most important findings on the structure of the RS, including results of our recent cryo‐electron tomographic analysis of the RS protein complex.
Journal of Synchrotron Radiation | 2011
Khanh Huy Bui; Gaia Pigino; Takashi Ishikawa
Based on the molecular architecture revealed by electron cryo-tomography, the mechanism of the bending motion of eukaryotic flagella/cilia is discussed.
Journal of Structural Biology | 2010
Francesca Cantele; Eugenio Paccagnini; Gaia Pigino; Pietro Lupetti; Salvatore Lanzavecchia
We present a strategy for the alignment of dual-axis tomographic series, based on reference points and simultaneous alignment of both series. Each series is first aligned individually, an affine transformation is determined to bring the two series in a unique reference system, and all experimental coordinates are combined in a single system of equations. In case of severe shrinkage, a global and a local refinement of the orientation parameters are performed to correct all minors misalignments. The strategy is illustrated on tomographic experiments performed on sections from plastic-embedded biological samples. The efficiency in correcting the misalignment of gold particles and in improving the quality of the reconstruction is documented both visually and quantitatively. In our approach every region of the tomogram is associated with its own orientation parameters and can be eventually reconstructed with the preferred algorithm. This is convenient in the computation of 3D averages of equivalent structures. A simulation experiment is presented to show that the performances of this approach are superior to those of the method of rotation in direct space.
Optics Express | 2015
Ismo Vartiainen; Christian Holzner; Istvan Mohacsi; Petri Karvinen; Ana Diaz; Gaia Pigino; Christian David
Zernike phase contrast microscopy is a well-established method for imaging specimens with low absorption contrast. It has been successfully implemented in full-field microscopy using visible light and X-rays. In microscopy Cowleys reciprocity principle connects scanning and full-field imaging. Even though the reciprocity in Zernike phase contrast has been discussed by several authors over the past thirty years, only recently it was experimentally verified using scanning X-ray microscopy. In this paper, we investigate the image and contrast formation in scanning Zernike phase contrast microscopy with a particular and detailed focus on the origin of imaging artifacts that are typically associated with Zernike phase contrast. We demonstrate experimentally with X-rays the effect of the phase mask design on the contrast and halo artifacts and present an optimized design of the phase mask with respect to photon efficiency and artifact reduction. Similarly, due to the principle of reciprocity the observations and conclusions of this work have direct applicability to Zernike phase contrast in full-field microscopy as well.