Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaia Zuccolotto is active.

Publication


Featured researches published by Gaia Zuccolotto.


Small | 2014

Magneto‐Plasmonic Au‐Fe Alloy Nanoparticles Designed for Multimodal SERS‐MRI‐CT Imaging

Vincenzo Amendola; Stefano Scaramuzza; Lucio Litti; Moreno Meneghetti; Gaia Zuccolotto; Antonio Rosato; Elena Nicolato; Pasquina Marzola; Giulio Fracasso; Cristina Anselmi; Marcella Pinto; Marco Colombatti

Diagnostic approaches based on multimodal imaging are needed for accurate selection of the therapeutic regimens in several diseases, although the dose of administered contrast drugs must be reduced to minimize side effects. Therefore, large efforts are deployed in the development of multimodal contrast agents (MCAs) that permit the complementary visualization of the same diseased area with different sensitivity and different spatial resolution by applying multiple diagnostic techniques. Ideally, MCAs should also allow imaging of diseased tissues with high spatial resolution during surgical interventions. Here a new system based on multifunctional Au-Fe alloy nanoparticles designed to satisfy the main requirements of an ideal MCA is reported and their biocompatibility and imaging capability are described. The MCAs show easy and versatile surface conjugation with thiolated molecules, magnetic resonance imaging (MRI) and computed X-ray tomography (CT) signals for anatomical and physiological information (i.e., diagnostic and prognostic imaging), large Raman signals amplified by surface enhanced Raman scattering (SERS) for high sensitivity and high resolution intrasurgical imaging, biocompatibility, exploitability for in vivo use and capability of selective accumulation in tumors by enhanced permeability and retention effect. Taken together, these results show that Au-Fe nanoalloys are excellent candidates as multimodal MRI-CT-SERS imaging agents.


Endocrine-related Cancer | 2012

Combination of sorafenib and everolimus impacts therapeutically on adrenocortical tumor models

Barbara Mariniello; Antonio Rosato; Gaia Zuccolotto; Beatrice Rubin; Maria Verena Cicala; Isabella Finco; Maurizio Iacobone; Anna Chiara Frigo; Ambrogio Fassina; Raffaele Pezzani; Franco Mantero

Treatment options are insufficient in patients with adrenocortical carcinoma (ACC). Based on the efficacy of sorafenib, a tyrosine kinase inhibitor, and everolimus, an inhibitor of the mammalian target of rapamycin in tumors of different histotype, we aimed at testing these drugs in adrenocortical cancer models. The expression of vascular endothelial growth factor and its receptors (VEGFR1-2) was studied in 18 ACCs, 33 aldosterone-producing adenomas, 12 cortisol-producing adenomas, and six normal adrenal cortex by real-time PCR and immunohistochemistry and by immunoblotting in SW13 and H295R cancer cell lines. The effects of sorafenib and everolimus, alone or in combination, were tested on primary adrenocortical cultures and SW13 and H295R cells by evaluating cell viability and apoptosis in vitro and tumor growth inhibition of tumor cell line xenografts in immunodeficient mice in vivo. VEGF and VEGFR1-2 were detected in all samples and appeared over-expressed in two-thirds of ACC specimens. Dose-dependent inhibition of cell viability was observed particularly in SW13 cells after 24 h treatment with either drug; drug combination produced markedly synergistic growth inhibition. Increasing apoptosis was observed in tumor cells treated with the drugs, particularly with sorafenib. Finally, a significant mass reduction and increased survival were observed in SW13 xenograft model undergoing treatment with the drugs in combination. Our data suggest that an autocrine VEGF loop may exist within ACC. Furthermore, a combination of molecularly targeted agents may have both antiangiogenic and direct antitumor effects and thus could represent a new therapeutic tool for the treatment of ACC.


ACS Nano | 2014

In Vivo Fate of Avidin-Nucleic Acid Nanoassemblies as Multifunctional Diagnostic Tools

Paolo Bigini; Sara Previdi; Elisabetta Casarin; Davide Silvestri; Martina Bruna Violatto; Sonia Facchin; Leopoldo Sitia; Antonio Rosato; Gaia Zuccolotto; Nicola Realdon; Fabio Fiordaliso; Mario Salmona; Margherita Morpurgo

This study describes the formulation optimization and body-cell distribution and clearance in mice of a dually fluorescent biodegradable poly avidin nanoassembly based on the novel Avidin-Nucleic-Acid-Nano-ASsembly (ANANAS) platform as a potential advancement of classic avidin/biotin-based targeted delivery. The nanoformulation circulates freely in the bloodstream; it is slowly captured by filter organs; it is efficiently cleared within 24-48 h, and it is poorly immunogenic. The system displays more favorable properties than its parent monomeric avidin and it is a promising tool for diagnostic purposes for future translational aims, for which free circulation in the bloodstream, safety, multifunctionality and high composition definition are all necessary requirements. In addition, the assembly shows a time-dependent cell penetration capability, suggesting it may also function as a NP-dependent drug delivery tool. The ease of preparation together with the possibility to fine-tune the surface composition makes it also an ideal candidate to understand if and how nanoparticle composition affects its localization.


Acta Neuropathologica | 2015

Collagen VI regulates peripheral nerve regeneration by modulating macrophage recruitment and polarization.

Peiwen Chen; Matilde Cescon; Gaia Zuccolotto; Lucilla Nobbio; Cristina Colombelli; Monica Filaferro; Giovanni Vitale; M. Laura Feltri; Paolo Bonaldo

Macrophages contribute to peripheral nerve regeneration and produce collagen VI, an extracellular matrix protein involved in nerve function. Here, we show that collagen VI is critical for macrophage migration and polarization during peripheral nerve regeneration. Nerve injury induces a robust upregulation of collagen VI, whereas lack of collagen VI in Col6a1−/− mice delays peripheral nerve regeneration. In vitro studies demonstrated that collagen VI promotes macrophage migration and polarization via AKT and PKA pathways. Col6a1−/− macrophages exhibit impaired migration abilities and reduced antiinflammatory (M2) phenotype polarization, but are prone to skewing toward the proinflammatory (M1) phenotype. In vivo, macrophage recruitment and M2 polarization are impaired in Col6a1−/− mice after nerve injury. The delayed nerve regeneration of Col6a1−/− mice is induced by macrophage deficits and rejuvenated by transplantation of wild-type bone marrow cells. These results identify collagen VI as a novel regulator for peripheral nerve regeneration by modulating macrophage function.


PLOS ONE | 2014

PSMA-Specific CAR-Engineered T Cells Eradicate Disseminated Prostate Cancer in Preclinical Models

Gaia Zuccolotto; Giulio Fracasso; Anna Merlo; Isabella Monia Montagner; Maria Rondina; Sara Bobisse; Mariangela Figini; Sara Cingarlini; Marco Colombatti; Paola Zanovello; Antonio Rosato

Immunology-based interventions have been proposed as a promising curative chance to effectively attack postoperative minimal residual disease and distant metastatic localizations of prostate tumors. We developed a chimeric antigen receptor (CAR) construct targeting the human prostate-specific membrane antigen (hPSMA), based on a novel and high affinity specific mAb. As a transfer method, we employed last-generation lentiviral vectors (LV) carrying a synthetic bidirectional promoter capable of robust and coordinated expression of the CAR molecule, and a bioluminescent reporter gene to allow the tracking of transgenic T cells after in vivo adoptive transfer. Overall, we demonstrated that CAR-expressing LV efficiently transduced short-term activated PBMC, which in turn were readily stimulated to produce cytokines and to exert a relevant cytotoxic activity by engagement with PSMA+ prostate tumor cells. Upon in vivo transfer in tumor-bearing mice, CAR-transduced T cells were capable to completely eradicate a disseminated neoplasia in the majority of treated animals, thus supporting the translation of such approach in the clinical setting.


Urologic Oncology-seminars and Original Investigations | 2013

Paclitaxel-hyaluronan hydrosoluble bioconjugate: Mechanism of action in human bladder cancer cell lines ☆

Isabella Monia Montagner; Alessandra Banzato; Gaia Zuccolotto; Davide Renier; Monica Campisi; Pierfrancesco Bassi; Paola Zanovello; Antonio Rosato

OBJECTIVES A previously described hydrosoluble paclitaxel-hyaluronan bioconjugate appears particularly well suited for treatment of superficial bladder cancer because of its in vitro cytotoxic profile against urothelial carcinoma (UC) cell lines and in vivo biocompatibility. The aim of this work was to assess the mechanism of action of the bioconjugate in UC cells. MATERIALS AND METHODS Expression of CD44 and RHAMM hyaluronan-binding receptors in RT-4 and RT-112/84 UC cell lines, interaction of fluorochrome-labeled bioconjugate with tumor cells, CD44 modulation upon incubation with the compound or free hyaluronan, and caspase activation were assessed by flow cytometry. Cytotoxicity was studied by the MTT assay. Analysis of bioconjugate intracellular localization and effects on β-tubulin organization was carried out by confocal microscopy. RESULTS The paclitaxel-hyaluronan bioconjugate bound to UC tumor cells entered intracellular compartments through a saturable and energy-dependent mechanism that involved CD44, as assessed by blocking with specific antibody. Upon internalization, the bioconjugate accumulated into lysosomes where the esteric bond between paclitaxel and the hyaluronan moiety was cleaved, leading to cytoplasmic diffusion of the free drug, caspase activation, and disruption of the β-tubulin microtubular mesh with subsequent cell death. CONCLUSIONS Conjugation of paclitaxel to hyaluronan results in a new chemical entity, characterized by selective targeting to polymer receptors on plasma membrane and cell entry through receptor-mediated endocytosis, followed by lysosomal accumulation. Ultimately, the active molecule is released, fully preserving the cytotoxic potential and profile of clinically used free paclitaxel.


PLOS ONE | 2014

Peritoneal Tumor Carcinomatosis: Pharmacological Targeting with Hyaluronan-Based Bioconjugates Overcomes Therapeutic Indications of Current Drugs

Isabella Monia Montagner; Anna Merlo; Gaia Zuccolotto; Davide Renier; Monica Campisi; Gianfranco Pasut; Paola Zanovello; Antonio Rosato

Peritoneal carcinomatosis still lacks reliable therapeutic options. We aimed at testing a drug delivery strategy allowing a controlled release of cytotoxic molecules and selective targeting of tumor cells. We comparatively assessed the efficacy of a loco-regional intraperitoneal treatment in immunocompromised mice with bioconjugates formed by chemical linking of paclitaxel or SN-38 to hyaluronan, against three models of peritoneal carcinomatosis derived from human colorectal, gastric and esophageal tumor cell xenografts. In vitro, bioconjugates were selectively internalized through mechanisms largely dependent on interaction with the CD44 receptor and caveolin-mediated endocytosis, which led to accumulation of compounds into lysosomes of tumor cells. Moreover, they inhibited tumor growth comparably to free drugs. In vivo, efficacy of bioconjugates or free drugs against luciferase-transduced tumor cells was assessed by bioluminescence optical imaging, and by recording mice survival. The intraperitoneal administration of bioconjugates in tumor-bearing mice exerted overlapping or improved therapeutic efficacy compared with unconjugated drugs. Overall, drug conjugation to hyaluronan significantly improved the profiles of in vivo tolerability and widened the field of application of existing drugs, over their formal approval or current use. Therefore, this approach can be envisaged as a promising therapeutic strategy for loco-regional treatment of peritoneal carcinomatosis.


Cell Death & Differentiation | 2018

Cell-autonomous and cell non-autonomous downregulation of tumor suppressor DAB2IP by microRNA-149-3p promotes aggressiveness of cancer cells

Arianna Bellazzo; Giulio Di Minin; Elena Valentino; Daria Sicari; Denis Torre; Luigi Marchionni; Federica Serpi; Michael B. Stadler; Daniela Taverna; Gaia Zuccolotto; Isabella Monia Montagner; Antonio Rosato; Federica Tonon; Cristina Zennaro; Chiara Agostinis; Roberta Bulla; Miguel Mano; Giannino Del Sal; Licio Collavin

The tumor suppressor DAB2IP contributes to modulate the network of information established between cancer cells and tumor microenvironment. Epigenetic and post-transcriptional inactivation of this protein is commonly observed in multiple human malignancies, and can potentially favor progression of tumors driven by a variety of genetic mutations. Performing a high-throughput screening of a large collection of human microRNA mimics, we identified miR-149-3p as a negative post-transcriptional modulator of DAB2IP. By efficiently downregulating DAB2IP, this miRNA enhances cancer cell motility and invasiveness, facilitating activation of NF-kB signaling and promoting expression of pro-inflammatory and pro-angiogenic factors. In addition, we found that miR-149-3p secreted by prostate cancer cells induces DAB2IP downregulation in recipient vascular endothelial cells, stimulating their proliferation and motility, thus potentially remodeling the tumor microenvironment. Finally, we found that inhibition of endogenous miR-149-3p restores DAB2IP activity and efficiently reduces tumor growth and dissemination of malignant cells. These observations suggest that miR-149-3p can promote cancer progression via coordinated inhibition of DAB2IP in tumor cells and in stromal cells.


Cell Death & Differentiation | 2018

BMP9 counteracts the tumorigenic and pro-angiogenic potential of glioblastoma

Elena Porcù; Francesca Maule; Daniele Boso; Elena Rampazzo; Vito Barbieri; Gaia Zuccolotto; Antonio Rosato; Chiara Frasson; Giampietro Viola; Allesandro Della Puppa; Giuseppe Basso; Luca Persano

Glioblastoma multiforme (GBM) is a highly vascularized and aggressive brain tumor, with a strong ability to disseminate and invade the surrounding parenchyma. In addition, a subpopulation of GBM stem cells has been reported to possess the ability to transdifferentiate into tumor-derived endothelial cells (TDECs), supporting the resistance to anti-angiogenic treatments of newly formed blood vessels. Bone Morphogenetic Protein 9 (BMP9) is critically involved in the processes of cancer cell differentiation, invasion and metastasis, representing a potential tool in order to impair the intrinsic GBM aggressiveness. Here we demonstrate that BMP9 is able to trigger the activation of SMADs in patient-derived GBM cells, and to strongly inhibit proliferation and invasion by reducing the activation of PI3K/AKT/MAPK and RhoA/Cofilin pathways, respectively. Intriguingly, BMP9 treatment is sufficient to induce a strong differentiation of GBM stem-like cells and to significantly counteract the already reported process of GBM cell transdifferentiation into TDECs not only in in vitro mimicked TDEC models, but also in vivo in orthotopic xenografts in mice. Additionally, we describe a strong BMP9-mediated inhibition of the whole angiogenic process engaged during GBM tumor formation. Based on these results, we believe that BMP9, by acting at multiple levels against GBM cell aggressiveness, can be considered a promising candidate, to be further developed, for the future therapeutic management of GBM.


Oncoscience | 2015

Drug conjugation to hyaluronan widens therapeutic indications for ovarian cancer

Isabella Monia Montagner; Anna Merlo; Debora Carpanese; Gaia Zuccolotto; Davide Renier; Monica Campisi; Gianfranco Pasut; Paola Zanovello; Antonio Rosato

Collaboration


Dive into the Gaia Zuccolotto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Davide Renier

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge