Gail Haddock
Sheffield Hallam University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gail Haddock.
Neurology | 2013
Marios Hadjivassiliou; Pascale Aeschlimann; David S. Sanders; Markku Mäki; Katri Kaukinen; Richard A. Grünewald; Oliver Bandmann; Nicola Woodroofe; Gail Haddock; Daniel Aeschlimann
Objectives: The previous finding of an immunologic response primarily directed against transglutaminase (TG)6 in patients with gluten ataxia (GA) led us to investigate the role of TG6 antibodies in diagnosing GA. Methods: This was a prospective cohort study. We recruited patients from the ataxia, gluten/neurology, celiac disease (CD), and movement disorder clinics based at Royal Hallamshire Hospital (Sheffield, UK) and the CD clinic, Tampere University Hospital (Tampere, Finland). The groups included patients with idiopathic sporadic ataxia, GA, and CD, and neurology and healthy controls. All were tested for TG6 antibodies. Duodenal biopsies were performed in patients with positive serology. In addition, biopsies from 15 consecutive patients with idiopathic sporadic ataxia and negative serology for gluten-related disorders were analyzed for immunoglobulin A deposits against TG. Results: The prevalence of TG6 antibodies was 21 of 65 (32%) in idiopathic sporadic ataxia, 35 of 48 (73%) in GA, 16 of 50 (32%) in CD, 4 of 82 (5%) in neurology controls, and 2 of 57 (4%) in healthy controls. Forty-two percent of patients with GA had enteropathy as did 51% of patients with ataxia and TG6 antibodies. Five of 15 consecutive patients with idiopathic sporadic ataxia had immunoglobulin A deposits against TG2, 4 of which subsequently tested positive for TG6 antibodies. After 1 year of gluten-free diet, TG6 antibody titers were significantly reduced or undetectable. Conclusions: Antibodies against TG6 are gluten-dependent and appear to be a sensitive and specific marker of GA.
Arthritis & Rheumatism | 2013
Jianru Wang; Ye Tian; Kate L E Phillips; Neil Chiverton; Gail Haddock; Rowena A.D. Bunning; Alison K. Cross; Irving M. Shapiro; Christine L. Le Maitre
OBJECTIVE To investigate tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) regulation of CCL3 expression in nucleus pulposus (NP) cells and in macrophage migration. METHODS Quantitative reverse transcription-polymerase chain reaction and immunohistochemistry were used to measure CCL3 expression in NP cells. Transfections were used to determine the role of NF-κB, CCAAT/enhancer binding protein (C/EBPβ), and MAPK on cytokine-mediated CCL3 promoter activity. The effect of NP-conditioned medium on macrophage migration was measured using a Transwell system. RESULTS An increase in CCL3 expression and promoter activity was observed in NP cells after TNFα or IL-1β treatment. Treatment of cells with NF-κB and MAPK inhibitors abolished the effect of the cytokines on CCL3 expression. The inductive effect of p65 and C/EBPβ on the CCL3 promoter was confirmed through gain-of-function and loss-of-function studies. Notably, cotransfection with p50 completely blocked cytokine- and p65-dependent induction. In contrast, c-Rel and RelB had little effect on promoter activity. Lentiviral transduction with short hairpin RNA for p65 (shp65) and shIKKβ significantly decreased the TNFα-dependent increase in CCL3 expression. Analysis of degenerated human NP tissue samples showed that CCL3, but not CCL4, expression correlated positively with the grade of tissue degeneration. Importantly, treatment of macrophages with conditioned medium of NP cells treated with TNFα or IL-1β promoted their migration. Pretreatment of macrophages with an antagonist of CCR1, the primary receptor for CCL3 and CCL4, blocked cytokine-mediated migration. CONCLUSION Our findings indicate that TNFα and IL-1β modulate the expression of CCL3 in NP cells by controlling the activation of MAPK, NF-κB, and C/EBPβ signaling. The CCL3-CCR1 axis may play an important role in promoting macrophage infiltration in degenerated, herniated discs.
Brain Research | 2006
Alison K. Cross; Gail Haddock; C.J. Stock; Stuart M. Allan; J. Surr; Rowena A.D. Bunning; David J. Buttle; M.N. Woodroofe
ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) enzymes are a recently described group of metalloproteinases. The substrates degraded by ADAMTS-1, -4 and -5 suggest that they play a role in turnover of extracellular matrix in the central nervous system (CNS). ADAMTS-1 is also known to exhibit anti-angiogenic activity. Their main endogenous inhibitor is tissue inhibitor of metalloproteinases (TIMP)-3. The present study was designed to investigate ADAMTS-1, -4 and -5 and TIMP-3 expression after experimental cerebral ischaemia and to examine whether cytokines known to be up-regulated in stroke could alter their expression by astrocytes in vitro. Focal cerebral ischaemia was induced by transient middle cerebral artery occlusion in the rat using the filament method. Our results demonstrate a significant increase in expression of ADAMTS-1 and -4 in the occluded hemisphere but no significant change in TIMP-3. This was accompanied by an increase in mRNA levels for interleukin (IL)-1beta, IL-1 receptor antagonist (IL-1ra) and tumour necrosis factor (TNF). ADAMTS-4 mRNA and protein were up-regulated by TNF in primary human astrocyte cultures. The increased ADAMTS-1 and -4 in experimental stroke, together with no change in TIMP-3, may promote ECM breakdown after stroke, enabling infiltration of inflammatory cells and contributing to brain injury. In vitro studies suggest that the in vivo modulation of ADAMTS-1 and -4 may be controlled in part by TNF.
Arthritis Research & Therapy | 2013
Kate L E Phillips; Neil Chiverton; Anthony L.R. Michael; A A Cole; Lee Breakwell; Gail Haddock; Rowena A.D. Bunning; Alison K. Cross; Christine L. Le Maitre
IntroductionThe aims of these studies were to identify the cytokine and chemokine expression profile of nucleus pulposus (NP) cells and to determine the relationships between NP cell cytokine and chemokine production and the characteristic tissue changes seen during intervertebral disc (IVD) degeneration.MethodsReal-time q-PCR cDNA Low Density Array (LDA) was used to investigate the expression of 91 cytokine and chemokine associated genes in NP cells from degenerate human IVDs. Further real-time q-PCR was used to investigate 30 selected cytokine and chemokine associated genes in NP cells from non-degenerate and degenerate IVDs and those from IVDs with immune cell infiltrates (‘infiltrated’). Immunohistochemistry (IHC) was performed for four selected cytokines and chemokines to confirm and localize protein expression in human NP tissue samples.ResultsLDA identified the expression of numerous cytokine and chemokine associated genes including 15 novel cytokines and chemokines. Further q-PCR gene expression studies identified differential expression patterns in NP cells derived from non-degenerate, degenerate and infiltrated IVDs. IHC confirmed NP cells as a source of IL-16, CCL2, CCL7 and CXCL8 and that protein expression of CCL2, CCL7 and CXCL8 increases concordant with histological degenerative tissue changes.ConclusionsOur data indicates that NP cells are a source of cytokines and chemokines within the IVD and that these expression patterns are altered in IVD pathology. These findings may be important for the correct assessment of the ‘degenerate niche’ prior to autologous or allogeneic cell transplantation for biological therapy of the degenerate IVD.
Journal of Neuroimmunology | 2014
Cm Bradford; Ines Ramos; Alison K. Cross; Gail Haddock; Stephen McQuaid; Anthony P. Nicholas; M. Nicola Woodroofe
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease, considered to be autoimmune in origin. Post-translational modification of central nervous system proteins, including glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP), through citrullination of arginine residues, may lead to exposure of neoepitopes, triggering autoimmunity. Here we investigated the expression of citrullinated proteins in active MS lesions, MS normal appearing white matter and control brain white matter. We demonstrate increased citrullinated GFAP and MBP by immunohistochemistry and western blotting in areas of ongoing demyelination, suggesting a pivotal role for deimination of GFAP and MBP in MS pathogenesis MS.
Multiple Sclerosis Journal | 2006
Gail Haddock; Alison K. Cross; J. Plumb; J. Surr; David J. Buttle; Rowena A.D. Bunning; M.N. Woodroofe
ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) -1, -4 and -5 proteases have been identified in the CNS at the mRNA level. These glutamyl endopeptidases, inhibited by tissue inhibitor of metalloproteinases (TIMP)-3, are key enzymes in the degradation of the aggregating chondroitin sulphate proteoglycans (CSPGs), and may therefore play a role in CNS extracellular matrix (ECM) changes in multiple sclerosis (MS). We have investigated ADAMTS and TIMP-3 expression in normal and MS CNS white matter by real-time RT-PCR, western blotting and immunohistochemistry. We report for the first time the presence of ADAMTS-1, -4 and -5 in normal and MS white matter. Levels of ADAMTS-1 and -5 mRNA were decreased in MS compared to normal tissue, with no significant change in ADAMTS-4 mRNA levels. Protein levels of ADAMTS-4 were significantly higher in MS tissue compared to normal tissue. Immunohistochemical studies demonstrated that ADAMTS-4 was associated predominantly with astrocytes with increased expression within MS lesions. TIMP-3 mRNA was significantly decreased in MS compared to controls. These studies suggest a role for ADAMTS-4 in the pathogenesis of MS. Further studies on the activity of ADAMTS-4 will enable a better understanding of its role in the turnover of the ECM of white matter in MS.
Multiple Sclerosis Journal | 2006
J. Plumb; Stephen McQuaid; Alison K. Cross; J. Surr; Gail Haddock; Rowena A.D. Bunning; M.N. Woodroofe
ADAM-17, a disintegrin and metalloproteinase, is the major proteinase responsible for the cleavage of membrane-bound tumour necrosis factor (TNF) as well as being an active sheddase of other cytokines, cytokine receptors, growth factors and adhesion molecules. TNF is a major proinflammatory cytokine that has been identified as having a pathogenic role in inflammatory diseases within the CNS including multiple sclerosis (MS). Here we report the cellular origin and distribution of ADAM- 17 expression within clinically and neuropathologically confirmed MS and normal control white matter, assessed by immunohistochemistry, western blotting and PCR. ADAM-17 expression was associated with the blood vessel endothelium, activated macrophages/microglia and parenchymal astrocytes in MS white matter. Increased levels of ADAM-17 immunoreactivity were displayed in active lesions with evidence of recent myelin breakdown. Further studies into the functional role of ADAM-17 in the pathogenesis of MS and other inflammatory conditions are required.
Journal of Neuroimmunology | 2005
Jonnie Plumb; Alison K. Cross; Jessica Surr; Gail Haddock; Terence Smith; Rowena A.D. Bunning; M. Nicola Woodroofe
Tumour necrosis factor (TNF) is a major immunomodulatory and proinflammatory cytokine implicated in the pathogenesis of multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE). ADAM-17 cleaves membrane-bound TNF into its soluble form. The distribution and level of ADAM-17 expression within spinal cords of Lewis rats with EAE was investigated. ADAM-17 was associated with endothelial cells in the naïve and pre-disease spinal cords. In peak disease astrocytic and inflammatory cells expressed ADAM-17. Upregulation of ADAM-17 mRNA expression was coupled with a decrease in mRNA levels of its inhibitor TIMP3 suggesting a role for ADAM-17 in EAE pathogenesis.
Neuroscience Letters | 2009
Martin J. Reid; Alison K. Cross; Gail Haddock; Stuart M. Allan; Chris J. Stock; M. Nicola Woodroofe; David J. Buttle; Rowena A.D. Bunning
The ADAMTS enzymes (a disintegrin and metalloproteinase with thrombospondin type 1-like motifs) have important roles in central nervous system (CNS) physiology and pathology. This current study aimed to analyse the expression of ADAMTS-9 following transient middle cerebral artery occlusion (tMCAo) in the rat, a model of focal cerebral ischaemia. Using real-time RT-PCR, ADAMTS-9 mRNA was demonstrated to be significantly up-regulated in tMCAo brain tissue compared to sham-operated at 24h post-ischaemia. The mature form of the ADAMTS-9 protein was only detected by Western blotting in brains subjected to tMCAo at 24h. In situ hybridisation demonstrated that ADAMTS-9 mRNA was expressed by neurones in tMCAo tissue. This study indicates that ADAMTS-9 expression is modulated in response to cerebral ischaemia in vivo and further research will resolve whether it plays a role in the subsequent degenerative or repair processes.
Biochemical Society Transactions | 2007
Gail Haddock; Alison K. Cross; Stuart M. Allan; Basil Sharrack; Jill T. Callaghan; Rowena A.D. Bunning; David J. Buttle; M.N. Woodroofe
The ECM (extracellular matrix) is a complex molecular framework that provides physical support to cells and tissues, while also providing signals for cell growth, migration, differentiation and survival. The ECM of the CNS (central nervous system) is unusual in that it is rich in CSPGs (chondroitin sulfate proteoglycans), hyaluronan and tenascins. The CSPGs are widely expressed throughout the developing and adult CNS and have a role in guiding or limiting neurite outgrowth and cell migration. Alterations in the synthesis or breakdown of the ECM may contribute to disease processes. Here, we examine changes in the brain-specific CSPGs, brevican and phosphacan, following transient middle cerebral artery occlusion, a model of stroke in the rat. We have investigated their expression at various time points as well as their spatial relationship with ADAMTS-4 (a disintegrin and metalloprotease with thrombospondin motifs 4). The co-localization of ADAMTS or its activity may indicate a functional role for this matrix-protease pair in degeneration/regeneration processes that occur in stroke.