Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gail M. Preston is active.

Publication


Featured researches published by Gail M. Preston.


Molecular Microbiology | 2008

Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25.

Gail M. Preston; Nicolas Bertrand; Paul B. Rainey

In vivo expression technology (IVET) analysis of rhizosphere‐induced genes in the plant growth‐promoting rhizobacterium (PGPR) Pseudomonas fluorescens SBW25 identified a homologue of the type III secretion system (TTSS) gene hrcC. The hrcC homologue resides within a 20‐kb gene cluster that resembles the type III (Hrp) gene cluster of Pseudomonas syringae. The type III (Rsp) gene cluster in P. fluorescens SBW25 is flanked by a homologue of the P. syringae TTSS‐secreted protein AvrE. P. fluorescens SBW25 is non‐pathogenic and does not elicit the hypersensitive response (HR) in any host plant tested. However, strains constitutively expressing the rsp‐specific sigma factor RspL elicit an AvrB‐dependent HR in Arabidopsis thaliana ecotype Col‐0, and a host‐specific HR in Nicotiana clevelandii. The inability of wild‐type P. fluorescens SBW25 to elicit a visible HR is therefore partly attributable to low expression of rsp genes in the leaf apoplast. DNA hybridization analysis indicates that rsp genes are present in many plant‐colonizing Pseudomonas and PGPR, suggesting that TTSSs may have a significant role in the biology of PGPR. However, rsp and rsc mutants retain the ability to reach high population levels in the rhizosphere. While functionality of the TTSS has been demonstrated, the ecological significance of the rhizosphere‐expressed TTSS of P. fluorescens SBW25 remains unclear.


Molecular Plant-microbe Interactions | 2008

Pseudomonas syringae pv. tomato DC3000 Uses Constitutive and Apoplast-Induced Nutrient Assimilation Pathways to Catabolize Nutrients That Are Abundant in the Tomato Apoplast

Arantza Rico; Gail M. Preston

The plant apoplast is the intercellular space that surrounds plant cells, in which metabolic and physiological processes relating to cell wall biosynthesis, nutrient transport, and stress responses occur. The apoplast is also the primary site of infection for hemibiotrophic pathogens such as P. syringae, which obtain nutrients directly from apoplastic fluid. We have used apoplastic fluid extracted from healthy tomato leaves as a growth medium for Pseudomonas spp. in order to investigate the role of apoplastic nutrients in plant colonization by Pseudomonas syringae. We have confirmed that apoplast extracts mimic some of the environmental and nutritional conditions that bacteria encounter during apoplast colonization by demonstrating that expression of the plant-induced type III protein secretion pathway is upregulated during bacterial growth in apoplast extracts. We used a modified phenoarray technique to show that apoplast-adapted P. syringae pv. tomato DC3000 expresses nutrient utilization pathways that allow it to use sugars, organic acids, and amino acids that are highly abundant in the tomato apoplast. Comparative analyses of the nutrient utilization profiles of the genome-sequenced strains P. syringae pv. tomato DC3000, P. syringae pv. syringae B728a, P. syringae pv. phaseolicola 1448A, and the unsequenced strain P. syringae pv. tabaci 11528 with nine other genome-sequenced strains of Pseudomonas provide further evidence that P. syringae strains are adapted to use nutrients that are abundant in the leaf apoplast. Interestingly, P. syringae pv. phaseolicola 1448A lacks many of the nutrient utilization abilities that are present in three other P. syringae strains tested, which can be directly linked to differences in the P. syringae pv. phaseolicola 1448A genome.


Molecular Ecology | 2003

Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces

Micaela Gal; Gail M. Preston; Ruth C. Massey; Andrew J. Spiers; Paul B. Rainey

Pseudomonas fluorescens SBW25 is a Gram‐negative bacterium that grows in close association with plants. In common with a broad range of functionally similar bacteria it plays an important role in the turnover of organic matter and certain isolates can promote plant growth. Despite its environmental significance, the causes of its ecological success are poorly understood. Here we describe the development and application of a simple promoter trapping strategy (IVET) to identify P. fluorescens SBW25 genes showing elevated levels of expression in the sugar beet rhizosphere. A total of 25 rhizosphere‐induced (rhi) fusions are reported with predicted roles in nutrient acquisition, stress responses, biosynthesis of phytohormones and antibiotics. One rhi fusion is to wss, an operon encoding an acetylated cellulose polymer. A mutant carrying a defective wss locus was competitively compromised (relative to the wild type) in the rhizosphere and in the phyllosphere, but not in bulk soil. The rhizosphere‐induced wss locus therefore contributes to the ecological performance of SBW25 in the plant environment and supports our conjecture that genes inactive in the laboratory environment, but active in the wild, are likely to be determinants of fitness in natural environments.


Molecular Plant Pathology | 2000

Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time

Gail M. Preston

UNLABELLED Abstract Pseudomonas syringae pv. tomato and the closely related pathovar P. s. pv. maculicola have been the focus of intensive research in recent years, not only because of the diseases they cause on tomato and crucifers, but because strains such as P. s. pv. tomato DC3000 and P. s. pv. maculicola ES4326 are pathogens of the model plant Arabidopsis thaliana. Consequently, both P. s. pv. tomato and P. s. pv. maculicola have been widely used to study the molecular mechanisms of host responses to infection. Analyses of the molecular basis of pathogenesis in P. s. pv. tomato reveal a complex and intimate interaction between bacteria and plant cells that depends on the coordinated expression of multiple pathogenicity and virulence factors. These include toxins, extracellular proteins and polysaccharides, and the translocation of proteins into plant cells by the type III (Hrp) secretion system. The contribution of individual virulence factors to parasitism and disease development varies significantly between strains. Application of functional genomics and cell biology to both pathogen and host within the P. s. pv. tomato/A. thaliana pathosystem provides a unique opportunity to unravel the molecular interactions underlying plant pathogenesis. Taxonomic relationship: Bacteria; Proteobacteria; gamma subdivision; Pseudomonadaceae/Moraxellaceae group; Pseudomonadaceae family; Pseudomonas genus; Pseudomonas syringae species; tomato pathovar. Microbiological properties: Gram-negative, aerobic, motile, rod-shaped, polar flagella, oxidase negative, arginine dihydrolase negative, DNA 58-60 mol% GC, elicits the hypersensitive response on tobacco. HOST RANGE Primarily studied as the causal agent of bacterial speck of tomato and as a model pathogen of A. thaliana, although it has been isolated from a wide range of crop and weed species. Disease symptoms: Tomato (Lycopersicon esculentum): Brown-black leaf spots sometimes surrounded by chlorotic margin; dark superficial specks on green fruit; specks on ripe fruit may become sunken, and are surrounded by a zone of delayed ripening. Stunting and yield loss, particularly if young plants are infected. Reduced market value of speckled fruit. A. thaliana: Water-soaked, spreading lesions, sometimes surrounded by chlorotic margin. EPIDEMIOLOGY Seed borne. Survives as a saprophyte in plant debris, soil and on leaf surfaces. Dispersed by aerosols and rain splash. Development of disease symptoms favoured by leaf wetness and cool temperatures (55-77 degrees F/13-25 degrees C). Disease control: Pathogen-free seed and transplants. Resistant and tolerant cultivars. Sanitation, rotation, and drip irrigation to reduce leaf wetness. Some measure of control with bactericides (copper, streptomycin).


Nature Chemical Biology | 2012

Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans

Wei Ge; Alexander Wolf; Tianshu Feng; Chia Hua Ho; Rok Sekirnik; Adam Zayer; Nicolas Granatino; Matthew E. Cockman; Christoph Loenarz; Nikita D. Loik; Adam P. Hardy; Timothy D. W. Claridge; Refaat B. Hamed; Rasheduzzaman Chowdhury; Lingzhi Gong; Carol V. Robinson; David C. Trudgian; Miao Jiang; Mukram Mohamed Mackeen; James S. O. McCullagh; Yuliya Gordiyenko; Armin Thalhammer; Atsushi Yamamoto; Ming Yang; Phebee Liu-Yi; Zhihong Zhang; Marion S. Schmidt-Zachmann; Benedikt M. Kessler; Peter J. Ratcliffe; Gail M. Preston

The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.


Plant Journal | 2010

Mutations in γ‐aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence

Duck Hwan Park; Rossana Mirabella; Philip A. Bronstein; Gail M. Preston; Michel A. Haring; Chun Keun Lim; Alan Collmer; Robert C. Schuurink

Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome harbors three genes annotated as gabT GABA transaminases. A DC3000 mutant lacking all three gabT genes was constructed and found to be unable to utilize GABA as a sole carbon and nitrogen source. In complete minimal media supplemented with GABA, the mutant grew less well than wild-type DC3000 and showed strongly reduced expression of hrpL and avrPto, which encode an alternative sigma factor and effector, respectively, associated with the type III secretion system. The growth of the gabT triple mutant was weakly reduced in Arabidopsis ecotype Landberg erecta (Ler) and strongly reduced in the Ler pop2-1 GABA transaminase-deficient mutant that accumulates higher levels of GABA. Much of the ability to grow on GABA-amended minimal media or in Arabidopsis pop2-1 leaves could be restored to the gabT triple mutant by expression in trans of just gabT2. The ability of DC3000 to elicit the hypersensitive response (HR) in tobacco leaves is dependent upon deployment of the type III secretion system, and the gabT triple mutant was less able than wild-type DC3000 to elicit this HR when bacteria were infiltrated along with GABA at levels of 1 mm or more. GABA may have multiple effects on P. syringae-plant interactions, with elevated levels increasing disease resistance.


Current Opinion in Biotechnology | 2000

In vivo expression technology strategies: valuable tools for biotechnology

Paul B. Rainey; Gail M. Preston

Whole genome sequences have shown that bacteria possess a significant number of genes that have no known function. It is probable that many of these are required for survival in environments other than the agar plate. In vivo selection strategies provide a means of obtaining genes active in complex natural environments. Direct access to these genes is essential for understanding ecological performance and provides novel opportunities for biotechnology.


Current Opinion in Microbiology | 1998

Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis

Gail M. Preston; Bernhard Haubold; Paul B. Rainey

Many bacteria form intimate associations with plants. Despite the agricultural and biotechnological significance of these bacteria, no whole genome sequences have yet been described. Plant-associated bacteria form a phylogenetically diverse group, with representative species from many major taxons. Sequence information from genomes of closely related bacteria, in combination with technological developments in the field of functional genomics, provides new opportunities for determining the origin and evolution of traits that contribute to bacterial fitness and interactions with plant hosts.


The American Naturalist | 2011

Local Biotic Environment Shapes the Spatial Scale of Bacteriophage Adaptation to Bacteria

Britt Koskella; John N. Thompson; Gail M. Preston; Angus Buckling

The ecological, epidemiological, and evolutionary consequences of host-parasite interactions are critically shaped by the spatial scale at which parasites adapt to hosts. The scale of interaction between hyperparasites and their parasites is likely to be influenced by the host of the parasite and potentially likely to differ among within-host environments. Here we examine the scale at which bacteriophages adapt to their host bacteria by studying natural isolates from the surface or interior of horse chestnut leaves. We find that phages are more infective to bacteria from the same tree relative to those from other trees but do not differ in infectivity to bacteria from different leaves within the same tree. The results suggest that phages target common bacterial species, including an important plant pathogen, within plant host tissues; this result has important implications for therapeutic phage epidemiology. Furthermore, we show that phages from the leaf interior are more infective to their local hosts than phages from the leaf surface are to theirs, suggesting either increased resistance of bacteria on the leaf surface or increased phage adaptation within the leaf. These results highlight that biotic environment can play a key role in shaping the spatial scale of parasite adaptation and influencing the outcome of coevolutionary interactions.


PLOS Pathogens | 2010

Metal Hyperaccumulation Armors Plants against Disease

Helen N. Fones; Calum A. R. Davis; Arantza Rico; Fang Fang; J. Andrew C. Smith; Gail M. Preston

Metal hyperaccumulation, in which plants store exceptional concentrations of metals in their shoots, is an unusual trait whose evolutionary and ecological significance has prompted extensive debate. Hyperaccumulator plants are usually found on metalliferous soils, and it has been proposed that hyperaccumulation provides a defense against herbivores and pathogens, an idea termed the ‘elemental defense’ hypothesis. We have investigated this hypothesis using the crucifer Thlaspi caerulescens, a hyperaccumulator of zinc, nickel, and cadmium, and the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm). Using leaf inoculation assays, we have shown that hyperaccumulation of any of the three metals inhibits growth of Psm in planta. Metal concentrations in the bulk leaf and in the apoplast, through which the pathogen invades the leaf, were shown to be sufficient to account for the defensive effect by comparison with in vitro dose–response curves. Further, mutants of Psm with increased and decreased zinc tolerance created by transposon insertion had either enhanced or reduced ability, respectively, to grow in high-zinc plants, indicating that the metal affects the pathogen directly. Finally, we have shown that bacteria naturally colonizing T. caerulescens leaves at the site of a former lead–zinc mine have high zinc tolerance compared with bacteria isolated from non-accumulating plants, suggesting local adaptation to high metal. These results demonstrate that the disease resistance observed in metal-exposed T. caerulescens can be attributed to a direct effect of metal hyperaccumulation, which may thus be functionally analogous to the resistance conferred by antimicrobial metabolites in non-accumulating plants.

Collaboration


Dive into the Gail M. Preston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge