Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Galen D. Reed is active.

Publication


Featured researches published by Galen D. Reed.


Science Translational Medicine | 2013

Metabolic imaging of patients with prostate cancer using hyperpolarized [1-¹³C]pyruvate.

Sarah J. Nelson; John Kurhanewicz; Daniel B. Vigneron; Peder E. Z. Larson; Andrea L. Harzstark; Marcus Ferrone; Mark Van Criekinge; Jose W. Chang; Robert Bok; Ilwoo Park; Galen D. Reed; Lucas Carvajal; Eric J. Small; Pamela N. Munster; Vivian Weinberg; Jan Henrik Ardenkjaer-Larsen; Albert P. Chen; Ralph E. Hurd; Liv-Ingrid Odegardstuen; Fraser Robb; James Tropp; Jonathan Murray

Metabolic imaging with hyperpolarized pyruvate was used to safely and noninvasively visualize prostate tumors in patients. The Hyperpolarized Prostate Cancer cells have a different metabolism than healthy cells. Specifically, they consume more pyruvate—a key component in glycolysis—than their normal counterparts. Nelson and colleagues therefore used a hyperpolarized form of pyruvate ([1-13C]pyruvate) to sensitively image increased levels of its product, [1-13C]lactate, as well as the flux of pyruvate to lactate. The [1-13C]pyruvate agent was used here in a first-in-human study in men with prostate cancer. Patients received varying doses of [1-13C]pyruvate that were found to be safe. These patients were then rapidly imaged with hyperpolarized 13C magnetic resonance (MR), which was able to provide dynamic (time course) information as well as three-dimensional (3D) (spatial) data at a single time point. Tumors were detected in all patients with biopsy-proven cancer. And, importantly, with 13C MR imaging (MRI), Nelson et al. were able to see cancer in regions of the prostate that were previously considered to be tumor-free upon inspection with other conventional anatomic imaging methods. With the ability to safely image tumor location and also follow tumor metabolism over time, hyperpolarized 13C MRI may be useful both for initial diagnosis and for monitoring therapy. Although the patients in this study had early-stage disease, the authors believe that [1-13C]lactate/[1-13C]pyruvate flux will only increase with tumor grade, making this imaging technology amenable to more advanced and aggressive cancers. Future studies will focus on optimizing agent preparation and delivery to ensure that this imaging technology can benefit patients in all clinical settings. This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-13C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo 13C MR data, it is possible to evaluate the distribution of agents such as [1-13C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-13C]lactate in tumor, with the ratio of [1-13C]lactate/[1-13C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect 13C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-13C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-13C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-13C]lactate/[1-13C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials.


IEEE Transactions on Medical Imaging | 2014

High Resolution

Galen D. Reed; Cornelius von Morze; Robert Bok; Bertram L. Koelsch; Mark Van Criekinge; Kenneth J. Smith; Hong Shang; Peder E. Z. Larson; John Kurhanewicz; Daniel B. Vigneron

(13)C steady state free precession (SSFP) magnetic resonance imaging and effective spin-spin relaxation time (T2) mapping were performed using hyperpolarized [(13)C] urea and [(13) C,(15)N2] urea injected intravenously in rats. (15)N labeling gave large T2 increases both in solution and in vivo due to the elimination of a strong scalar relaxation pathway. The T2 increase was pronounced in the kidney, with [(13) C,(15) N2] urea giving T2 values of 6.3±1.3 s in the cortex and medulla, and 11±2 s in the renal pelvis. The measured T2 in the aorta was 1.3±0.3 s. [(13)C] urea showed shortened T2 values in the kidney of 0.23±0.03 s compared to 0.28±0.03 s measured in the aorta. The enhanced T2 of [(13)C,(15)N2] urea was utilized to generate large signal enhancement by SSFP acquisitions with flip angles approaching the fully refocused regime. Projection images at 0.94 mm in-plane resolution were acquired with both urea isotopes, with [(13)C,(15) N2] urea giving a greater than four-fold increase in signal-to-noise ratio over [(13)C] urea.


Medical Image Analysis | 2011

^{13}

Robert Toth; Pallavi Tiwari; Mark A. Rosen; Galen D. Reed; John Kurhanewicz; Arjun Kalyanpur; Sona A. Pungavkar; Anant Madabhushi

Segmentation of the prostate boundary on clinical images is useful in a large number of applications including calculation of prostate volume pre- and post-treatment, to detect extra-capsular spread, and for creating patient-specific anatomical models. Manual segmentation of the prostate boundary is, however, time consuming and subject to inter- and intra-reader variability. T2-weighted (T2-w) magnetic resonance (MR) structural imaging (MRI) and MR spectroscopy (MRS) have recently emerged as promising modalities for detection of prostate cancer in vivo. MRS data consists of spectral signals measuring relative metabolic concentrations, and the metavoxels near the prostate have distinct spectral signals from metavoxels outside the prostate. Active Shape Models (ASMs) have become very popular segmentation methods for biomedical imagery. However, ASMs require careful initialization and are extremely sensitive to model initialization. The primary contribution of this paper is a scheme to automatically initialize an ASM for prostate segmentation on endorectal in vivo multi-protocol MRI via automated identification of MR spectra that lie within the prostate. A replicated clustering scheme is employed to distinguish prostatic from extra-prostatic MR spectra in the midgland. The spatial locations of the prostate spectra so identified are used as the initial ROI for a 2D ASM. The midgland initializations are used to define a ROI that is then scaled in 3D to cover the base and apex of the prostate. A multi-feature ASM employing statistical texture features is then used to drive the edge detection instead of just image intensity information alone. Quantitative comparison with another recent ASM initialization method by Cosio showed that our scheme resulted in a superior average segmentation performance on a total of 388 2D MRI sections obtained from 32 3D endorectal in vivo patient studies. Initialization of a 2D ASM via our MRS-based clustering scheme resulted in an average overlap accuracy (true positive ratio) of 0.60, while the scheme of Cosio yielded a corresponding average accuracy of 0.56 over 388 2D MR image sections. During an ASM segmentation, using no initialization resulted in an overlap of 0.53, using the Cosio based methodology resulted in an overlap of 0.60, and using the MRS-based methodology resulted in an overlap of 0.67, with a paired Students t-test indicating statistical significance to a high degree for all results. We also show that the final ASM segmentation result is highly correlated (as high as 0.90) to the initialization scheme.


Nature Communications | 2016

C MRI With Hyperpolarized Urea: In Vivo

Joseph Corea; Anita M. Flynn; Balthazar P. Lechêne; Greig C. Scott; Galen D. Reed; Peter J. Shin; Michael Lustig; Ana Claudia Arias

Magnetic resonance imaging is an inherently signal-to-noise-starved technique that limits the spatial resolution, diagnostic image quality and results in typically long acquisition times that are prone to motion artefacts. This limitation is exacerbated when receive coils have poor fit due to lack of flexibility or need for padding for patient comfort. Here, we report a new approach that uses printing for fabricating receive coils. Our approach enables highly flexible, extremely lightweight conforming devices. We show that these devices exhibit similar to higher signal-to-noise ratio than conventional ones, in clinical scenarios when coils could be displaced more than 18 mm away from the body. In addition, we provide detailed material properties and components performance analysis. Prototype arrays are incorporated within infant blankets for in vivo studies. This work presents the first fully functional, printed coils for 1.5- and 3-T clinical scanners.


Journal of Magnetic Resonance Imaging | 2012

T_{2}

Antonio C. Westphalen; Galen D. Reed; Phillip P. Vinh; Christopher Sotto; Daniel B. Vigneron; John Kurhanewicz

To determine the best combination of magnetic resonance imaging (MRI) parameters for the detection of locally recurrent prostate cancer after external beam radiation therapy.


Magnetic Resonance in Medicine | 2014

Mapping and

Cornelius von Morze; Robert Bok; Galen D. Reed; Jan Henrik Ardenkjaer-Larsen; John Kurhanewicz; Daniel B. Vigneron

To demonstrate simultaneous hyperpolarization and imaging of three 13C‐labeled perfusion MRI contrast agents with dissimilar molecular structures ([13C]urea, [13C]hydroxymethyl cyclopropane, and [13C]t‐butanol) and correspondingly variable chemical shifts and physiological characteristics, and to exploit their varying diffusibility for simultaneous measurement of vascular permeability and perfusion in initial preclinical studies.


Journal of Magnetic Resonance | 2013

^{15}

Yan Xing; Galen D. Reed; John M. Pauly; Adam B. Kerr; Peder E. Z. Larson

In metabolic MRI with hyperpolarized contrast agents, the signal levels vary over time due to T1 decay, T2 decay following RF excitations, and metabolic conversion. Efficient usage of the nonrenewable hyperpolarized magnetization requires specialized RF pulse schemes. In this work, we introduce two novel variable flip angle schemes for dynamic hyperpolarized MRI in which the flip angle is varied between excitations and between metabolites. These were optimized to distribute the magnetization relatively evenly throughout the acquisition by accounting for T1 decay, prior RF excitations, and metabolic conversion. Simulation results are presented to confirm the flip angle designs and evaluate the variability of signal dynamics across typical ranges of T1 and metabolic conversion. They were implemented using multiband spectral-spatial RF pulses to independently modulate the flip angle at various chemical shift frequencies. With these schemes we observed increased SNR of [1-(13)C]lactate generated from [1-(13)C]pyruvate, particularly at later time points. This will allow for improved characterization of tissue perfusion and metabolic profiles in dynamic hyperpolarized MRI.


Journal of Magnetic Resonance | 2011

N Labeling Effects

Cornelius von Morze; Galen D. Reed; Peter J. Shin; Peder E. Z. Larson; Simon Hu; Robert Bok; Daniel B. Vigneron

A new method was developed for simultaneous spatial localization and spectral separation of multiple compounds based on a single echo, by designing the acquisition to place individual compounds in separate frequency encoding bands. This method was specially designed for rapid and robust metabolic imaging of hyperpolarized (13)C substrates and their metabolic products, and was investigated in phantom studies and studies in normal mice and transgenic models of prostate cancer to provide rapid metabolic imaging of hyperpolarized [1-(13)C]pyruvate and its metabolic products [1-(13)C]lactate and [1-(13)C]alanine at spatial resolutions up to 3mm in-plane. Elevated pyruvate and lactate signals in the vicinity of prostatic tissues were observed in transgenic tumor mice. The multi-band frequency encoding technique enabled rapid metabolic imaging of hyperpolarized (13)C compounds with important advantages over prior approaches, including less complicated acquisition and reconstruction methods.


Magnetic Resonance Imaging | 2011

A magnetic resonance spectroscopy driven initialization scheme for active shape model based prostate segmentation

Simon Hu; Minhua Zhu; Hikari A.I. Yoshihara; David M. Wilson; Kayvan R. Keshari; Peter J. Shin; Galen D. Reed; Cornelius von Morze; Robert Bok; Peder E. Z. Larson; John Kurhanewicz; Daniel B. Vigneron

Hyperpolarized technology utilizing dynamic nuclear polarization has enabled rapid and high-sensitivity measurements of (13)C metabolism in vivo. The most commonly used in vivo agent for hyperpolarized (13)C metabolic imaging thus far has been [1-(13)C]pyruvate. In preclinical studies, not only is its uptake detected, but also its intracellular enzymatic conversion to metabolic products including [1-(13)C]lactate and [1-(13)C]alanine. However, the ratio of (13)C-lactate/(13)C-pyruvate measured in this data does not accurately reflect cellular values since much of the [1-(13)C]pyruvate is extracellular depending on timing, vascular properties, and extracellular space and monocarboxylate transporter activity. In order to measure the relative levels of intracellular pyruvate and lactate, in this project we hyperpolarized [1-(13)C]alanine and monitored the in vivo conversion to [1-(13)C]pyruvate and then the subsequent conversion to [1-(13)C]lactate. The intracellular lactate-to-pyruvate ratio of normal rat tissue measured with hyperpolarized [1-(13)C]alanine was 4.89±0.61 (mean±S.E.) as opposed to a ratio of 0.41±0.03 when hyperpolarized [1-(13)C]pyruvate was injected.


Magnetic Resonance in Medicine | 2014

Screen-printed flexible MRI receive coils

Ilwoo Park; Peder E. Z. Larson; James Tropp; Lucas Carvajal; Galen D. Reed; Robert Bok; Fraser Robb; John Bringas; Adrian P. Kells; Philip Pivirotto; Krystof S. Bankiewicz; Daniel B. Vigneron; Sarah J. Nelson

To investigate hyperpolarized 13C metabolic imaging methods in the primate brain that can be translated into future clinical trials for patients with brain cancer.

Collaboration


Dive into the Galen D. Reed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Bok

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Shin

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge