Galia Tsarfaty
Sheba Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Galia Tsarfaty.
Journal of Clinical Investigation | 1994
Dennis D. Taub; Galia Tsarfaty; Andrew Lloyd; Scott K. Durum; Dan L. Longo; William J. Murphy
Recombinant human growth hormone (rhGH) promotes human T cell engraftment in mice with severe combined immunodeficiency, suggesting that rhGH may have effects on T cell adhesion and migration in vivo. The ability of rhGH to directly affect the adhesion capacity of human T cells to a variety of human or murine adhesion molecules and extracellular matrix proteins was examined. rhGH induced significant human T cell adherence to both human and murine substrates via either beta 1 or beta 2 integrin molecules. rhGH was capable of inducing significant migration of resting and activated human T cells and their subsets. Most of the migratory response to rhGH was chemokinetic rather than chemotactic. In vivo engraftment studies in severe combined immunodeficiency mice receiving human T cells revealed that treatment with rhGH resulted in improved thymic engraftment, whereas treatment with non-human-reactive ovine GH demonstrated no significant effects. These data demonstrate that rhGH directly augments human T cell trafficking to peripheral murine lymphoid tissues. rhGH appears to be capable of directly altering the adhesive and migratory capacity of human T cells to molecules of either murine or human origin. Therefore, GH may, under either isogeneic or xenogeneic conditions, play a role in normal lymphocyte recirculation.
Stem Cells | 1998
Zhigang Tian; Mary Alice Woody; Rui Sun; Lisbeth A. Welniak; Arati Raziuddin; Satoshi Funakoshi; Galia Tsarfaty; Dan L. Longo; William J. Murphy
Recombinant human growth hormone (rhGH) was administered to mice after syngeneic bone marrow transplantation (BMT) to determine its effect on hematopoietic reconstitution. BALB/c mice were given 10 μg intraperitoneal injections of rhGH every other day for a total of 10 injections following syngeneic BMT. Mice that received rhGH exhibited significant increases in total hematopoietic progenitor cell content (colony‐forming unit‐culture) in both bone marrow and spleen. Erythroid cell progenitor content (burst‐forming unit‐erythroid) was also significantly increased after rhGH treatment. Analysis of peripheral blood indicated that administration of rhGH resulted in significant increases in the rate of white blood cell and platelet recovery. Granulocyte marker 8C5+ cells were also increased in the bone marrow and spleens of treated mice. Red blood cell, hematocrit, and hemoglobin levels were increased at all time points after rhGH treatment. No significant pathologic effects or weight gain were observed in mice receiving repeated injections of 10 μg rhGH. Thus, rhGH administration after syngeneic BMT promoted multilineage hematopoietic reconstitution and may be of clinical use for accelerating hematopoiesis after autologous BMT.
Oncogene | 2005
Yu-Wen Zhang; Yanli Su; Nathan J. Lanning; Margaret Gustafson; Nariyoshi Shinomiya; Ping Zhao; Brian Cao; Galia Tsarfaty; Ling-Mei Wang; Rick V. Hay; George F. Vande Woude
Downstream signaling that results from the interaction of hepatocyte growth factor/scatter factor (HGF/SF) with the receptor tyrosine kinase Met plays critical roles in tumor development, progression, and metastasis. This ligand–receptor pair is an attractive target for new diagnostic and therapeutic agents, preclinical development of which requires suitable animal models. The growth of heterotopic and orthotopic Met-expressing human tumor xenografts in conventional strains of immunocompromised mice inadequately replicates the paracrine stimulation by human HGF/SF (hHGF/SF) that occurs in humans with cancer. We have therefore generated a mouse strain transgenic for hHGF/SF (designated hHGF-Tg) on a severe combined immunodeficiency (SCID) background. We report here that the presence of ectopically expressed hHGF/SF ligand significantly enhances growth of heterotopic subcutaneous xenografts derived from human Met-expressing cancer cells, including the lines SK-LMS-1 (human leiomyosarcoma), U118 (human glioblastoma), and DU145 (human prostate carcinoma), but not that of M14-Mel xenografts (human melanoma that expresses insignificant levels of Met). Our results indicate that ectopic hHGF/SF can specifically activate Met in human tumor xenografts. This new hHGF-Tg strain of mice should provide a powerful tool for evaluating drugs and diagnostic agents that target the various pathways influenced by Met activity.
International Journal of Cancer | 2012
Sivan Izraely; Orit Sagi-Assif; Anat Klein; Tsipi Meshel; Galia Tsarfaty; Metsada Pasmanik-Chor; Clara Nahmias; Pierre-Olivier Couraud; Eugene Ateh; Joseph Bryant; Dave S.B. Hoon; Isaac P. Witz
Brain metastasis occurs frequently in melanoma patients with advanced disease whereby the prognosis is dismal. The underlying mechanisms of melanoma brain metastasis development are not well understood. We generated a reproducible melanoma brain metastasis model, consisting of brain‐metastasizing variants and local, subdermal variants that originate from the same melanomas thus sharing a common genetic background. The brain‐metastasizing variants were obtained by intracardiac inoculation. Brain metastasis variants when inoculated subdermally yielded spontaneous brain dormant micrometastasis. Cultured cells from the spontaneous brain micrometastasis grew very well in vitro and generated subdermal tumors after an orthotopic inoculation. Expression analysis assays indicated that the brain metastasis and micrometastasis cells expressed higher levels of angiopoietin‐like 4, prostaglandin‐synthesizing enzyme cyclooxygenase‐2, matrix metalloproteinase‐1 and preferentially expressed antigen in melanoma and lower levels of claudin‐1 and cysteine‐rich protein 61 than the corresponding cutaneous variants. The reproducible models of human melanoma metastasizing experimentally and spontaneously to the brain will facilitate the identification of novel biomarkers and targets for therapy and contribute to the deciphering of mechanisms underlying melanoma metastasis.
Immunology Letters | 2010
Sivan Izraely; Anat Klein; Orit Sagi-Assif; Tsipi Meshel; Galia Tsarfaty; Dave S.B. Hoon; Isaac P. Witz
Brain metastasis confers an extremely unfavorable prognosis upon melanoma patients. The mechanisms underlying the homing of metastatic melanoma to the brain and survival of metastatic melanoma cells in the brain are unknown. Tumor cells, including melanoma, use chemokine receptor-ligand axes to home to specific organ sites. To identify chemokine receptors that might be involved in brain-targeted melanoma metastasis, we first established a chemokine receptor profile of cultured melanoma cells (3 cell lines of cutaneous melanoma and 5 cell lines of melanoma brain metastasis). The expression of the membrane-bound chemokine CX3CL1 by these lines was also determined. We show that out of 19 receptors tested, cultured melanoma cells express CCR3, CCR4, CXCR3, CXCR7, CX3CR1 and membrane CX3CL1. Utilizing cells from newly created variants of human melanoma xenografts, we found that the expression of CCR4 was significantly higher in one brain metastatic variant compared to its expression in the corresponding local variant. Local and metastatic variants stimulated with the CCR4 ligand, CCL22, showed a differential AKT phosphorylation pattern. These findings may suggest the involvement of CCR4 in the process of brain metastasis in human melanoma, and that CCR4 may be a novel molecular biomarker for the identification of melanoma cells likely to metastasize to the brain.
Cancer Research | 2006
Raya Leibowitz-Amit; Galia Tsarfaty; Yamit Abargil; Gil M. Yerushalmi; Judith Horev; Ilan Tsarfaty
We have recently shown that Mimp, a mitochondrial carrier protein homologue, is induced by Met-hepatocyte growth factor/scatter factor (HGF/SF) signaling and decreases the mitochondrial membrane potential in DA3 mammary adenocarcinoma cells. We show here that induction of Mimp leads to growth arrest in response to HGF/SF by arresting cells at the S phase of the cell cycle. Induction of Mimp or its transient expression does not lead to apoptosis. Mimp also attenuates HGF/SF-induced cellular scattering in vitro and tumor growth in vivo. The exogenous induction of Mimp at levels similar to its endogenous induction by HGF/SF increases the level of the Met protein and its phosphorylation by HGF/SF but reduces the levels of Shc and prevents the HGF/SF-induced tyrosine phosphorylation of Grb2 and Shc. In contrast, the level of phosphatidylinositol 3-kinase (PI3K) increases following Mimp induction and the level of phosphorylated PI3K in response to HGF/SF is unaffected by the exogenous induction of Mimp. Moreover, exogenous Mimp prevents the HGF/SF-induced transcription of the serum response element-luciferase reporter gene. Our results show that Mimp expression reduces Met-HGF/SF-induced proliferation and scattering by attenuating and altering the downstream signaling of Met. These data show a new link between a tyrosine kinase growth factor receptor and a mitochondrial carrier homologue that regulates cellular growth, motility, and tumorigenicity.
Annals of the New York Academy of Sciences | 2010
Shaye Kivity; Galia Tsarfaty; Nancy Agmon-Levin; Miri Blank; David Manor; Eli Konen; Joab Chapman; Morris Reichlin; Craig Wasson; Yehuda Shoenfeld; Tammar Kushnir
Mice with experimental neuropsychiatric lupus (NPSLE), induced by anti‐ribosomal‐P antibodies, developed depression‐like behavior and a diminished sense of smell. Manganese‐enhanced MRI (MEMRI) allows in vivo mapping of functional neuronal connections in the brain, including the olfactory tract. The aim of this study was to analyze and describe, via the MEMRI technique, the effect of the anti‐ribosomal‐P injection on the olfactory pathway. Twenty mice were intra‐cerebra‐ventricular injected to the right hemisphere: 10 with human anti‐ribosomal‐P antibodies and 10 with human IgG antibodies (control). Depression was addressed by forced swimming test and smell function was evaluated by smelling different concentrations of menthol. MEMRI was used to investigate the olfactory system in these mice. Passive transfer of anti‐ribosomal‐P to mice resulted in a depression‐like behavior, accompanied with a significant deficit in olfactory function. MEMRI of these mice demonstrated significant reduction (P < 0.001) in normalized manganese enhancement ratios of olfactory structures, compared to control mice. We concluded that an impaired olfactory neuronal function in mice with experimental depression, mediated by passive transfer of human‐anti‐ribosomal‐P, can be demonstrated by MEMRI.
Cancer Research | 2016
Hila Schwartz; Eran Blacher; Malak Amer; Nir Livneh; Lilach Abramovitz; Anat Klein; Dikla Ben-Shushan; Shelly Soffer; Raquel Blazquez; Alonso Barrantes-Freer; Meike Müller; Karin Müller-Decker; Reuven Stein; Galia Tsarfaty; Ronit Satchi-Fainaro; Viktor Umansky; Tobias Pukrop; Neta Erez
Malignant melanoma is the deadliest of skin cancers. Melanoma frequently metastasizes to the brain, resulting in dismal survival. Nevertheless, mechanisms that govern early metastatic growth and the interactions of disseminated metastatic cells with the brain microenvironment are largely unknown. To study the hallmarks of brain metastatic niche formation, we established a transplantable model of spontaneous melanoma brain metastasis in immunocompetent mice and developed molecular tools for quantitative detection of brain micrometastases. Here we demonstrate that micrometastases are associated with instigation of astrogliosis, neuroinflammation, and hyperpermeability of the blood-brain barrier. Furthermore, we show a functional role for astrocytes in facilitating initial growth of melanoma cells. Our findings suggest that astrogliosis, physiologically instigated as a brain tissue damage response, is hijacked by tumor cells to support metastatic growth. Studying spontaneous melanoma brain metastasis in a clinically relevant setting is the key to developing therapeutic approaches that may prevent brain metastatic relapse. Cancer Res; 76(15); 4359-71. ©2016 AACR.
Biochemical Pharmacology | 2010
Debby Reuveni; Drora Halperin; Ina Fabian; Galia Tsarfaty; Nadir Askenasy; Itamar Shalit
Camptothecins (CPTs) are topoisomerase I inhibitors chemotherapeutic agents used in combination chemotherapy. We showed previously that combination of moxifloxacin (MXF) and CPT induced inhibitory effects on topoisomerase I activity, on proliferation of HT-29 cells in vitro and enhanced apoptosis, compared to CPT alone. Analysis of secretion of the pro-angiogenic factors IL-8 and VEGF showed significant reduction by MXF. Using a murine model of human colon carcinoma xenograft, we compared the effects of MXF/CPT in vitro to MXF/irinotecan combination in vivo. We show that the MXF/CPT inhibitory effects observed in vitro are reflected in the inhibition of the progressive growth of HT-29 cells implanted in SCID mice. Using caliper measurements, Doppler ultrasonography, image analyses and immunohistochemistry of nuclear proteins (Ki-67) and vascular endothelial cells (CD-31) we show that addition of MXF (45mg/kg) to a relatively ineffective dose of irinotecan (20mg/kg), results in a 50% and 30% decrease, respectively, in tumor size and a decrease in Ki-67 staining. Power Doppler Ultrasound showed a significant, pronounced decrease in the number of blood vessels, as did CD-31 staining, indicating decreased blood flow in tumors in mice treated with MXF alone or MXF/irinotecan compared to irinotecan. These results suggest that the combination of MXF/irinotecan may result in enhanced anti-neoplastic/anti-angiogenic activity.
Journal of Medicinal Chemistry | 2010
Hanit Marom; Keren Miller; Yossi Bechor-Bar; Galia Tsarfaty; Ronit Satchi-Fainaro; Michael Gozin
Androgen receptors are present in most advanced prostate cancer specimens, having a critical role in development of this type of cancer. For correct prognosis of patient conditions and treatment monitoring, noninvasive imaging techniques have great advantages over surgical procedures. We developed synthetic methodologies for preparation of novel androgen receptor-targeting agents in an attempt to build a versatile platform for prostate cancer imaging and treatment. The structure of these compounds comprises of a lanthanoid metal ion, gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Gd-DOTA)-based binding fragment and, connected to it by a flexible linker, bicalutamide-derived nonsteroidal antiandrogen moiety. A representative gadolinium complex 15 was evaluated as a magnetic resonance imaging (MRI) agent in C57/bl6 male mouse bearing orthotopic TRAMP C2 prostate tumor.