Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Galice Hoarau is active.

Publication


Featured researches published by Galice Hoarau.


Ecology and Evolution | 2013

Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal.

Alexander Jueterbock; Lennert Tyberghein; Heroen Verbruggen; James A. Coyer; Jeanine L. Olsen; Galice Hoarau

The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios predict sea surface temperature isotherms to shift up to 600 km northwards by the end of the 21st century. The pole-ward shift has already begun for many temperate seaweed species that are important intertidal foundation species. We asked the question: Where will climate change have the greatest impact on three foundational, macroalgal species that occur along North-Atlantic shores: Fucus serratus, Fucus vesiculosus, and Ascophyllum nodosum? To predict distributional changes of these key species under three IPCC (Intergovernmental Panel on Climate Change) climate change scenarios (A2, A1B, and B1) over the coming two centuries, we generated Ecological Niche Models with the program MAXENT. Model predictions suggest that these three species will shift northwards as an assemblage or “unit” and that phytogeographic changes will be most pronounced in the southern Arctic and the southern temperate provinces. Our models predict that Arctic shores in Canada, Greenland, and Spitsbergen will become suitable for all three species by 2100. Shores south of 45° North will become unsuitable for at least two of the three focal species on both the Northwest- and Northeast-Atlantic coasts by 2200. If these foundational species are unable to adapt to the rising temperatures, they will lose their centers of genetic diversity and their loss will trigger an unpredictable shift in the North-Atlantic intertidal ecosystem.


Ecology Letters | 2015

Biodiversity mediates top–down control in eelgrass ecosystems: a global comparative‐experimental approach

J. Emmett Duffy; Pamela L. Reynolds; Christoffer Boström; James A. Coyer; Mathieu Cusson; Serena Donadi; James G. Douglass; Johan S. Eklöf; Aschwin H. Engelen; Britas Klemens Eriksson; Stein Fredriksen; Lars Gamfeldt; Camilla Gustafsson; Galice Hoarau; Masakazu Hori; Kevin A. Hovel; Katrin Iken; Jonathan S. Lefcheck; Per-Olav Moksnes; Masahiro Nakaoka; Mary I. O'Connor; Jeanine L. Olsen; J. Paul Richardson; Jennifer L. Ruesink; Erik E. Sotka; Jonas Thormar; Matthew A. Whalen; John J. Stachowicz

Nutrient pollution and reduced grazing each can stimulate algal blooms as shown by numerous experiments. But because experiments rarely incorporate natural variation in environmental factors and biodiversity, conditions determining the relative strength of bottom-up and top-down forcing remain unresolved. We factorially added nutrients and reduced grazing at 15 sites across the range of the marine foundation species eelgrass (Zostera marina) to quantify how top-down and bottom-up control interact with natural gradients in biodiversity and environmental forcing. Experiments confirmed modest top-down control of algae, whereas fertilisation had no general effect. Unexpectedly, grazer and algal biomass were better predicted by cross-site variation in grazer and eelgrass diversity than by global environmental gradients. Moreover, these large-scale patterns corresponded strikingly with prior small-scale experiments. Our results link global and local evidence that biodiversity and top-down control strongly influence functioning of threatened seagrass ecosystems, and suggest that biodiversity is comparably important to global change stressors.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Historical invasions of the intertidal zone of Atlantic North America associated with distinctive patterns of trade and emigration

Susan H. Brawley; James A. Coyer; April M. H. Blakeslee; Galice Hoarau; Ladd E. Johnson; James E. Byers; Wytze T. Stam; Jeanine L. Olsen

Early invasions of the North American shore occurred mainly via deposition of ballast rock, which effectively transported pieces of the intertidal zone across the Atlantic. From 1773–1861, >880 European ships entered Pictou Harbor, Nova Scotia, as a result of emigration and trade from Europe. The rockweed Fucus serratus (1868) and the snail Littorina littorea (≈1840) were found in Pictou during this same period. With shipping records (a proxy for propagule pressure) to guide sampling, we used F. serratus as a model to examine the introductions because of its relatively low genetic diversity and dispersal capability. Microsatellite markers and assignment tests revealed 2 introductions of the rockweed into Nova Scotia: 1 from Galway (Ireland) to Pictou and the other from Greenock (Scotland) to western Cape Breton Island. To examine whether a high-diversity, high-dispersing species might have similar pathways of introduction, we analyzed L. littorea, using cytochrome b haplotypes. Eight of the 9 Pictou haplotypes were found in snails collected from Ireland and Scotland. Our results contribute to a broader understanding of marine communities, because these 2 conspicuous species are likely to be the tip of an “invasion iceberg” to the NW Atlantic from Great Britain and Ireland in the 19th Century.


PLOS ONE | 2013

Improving transferability of introduced species' distribution models: new tools to forecast the spread of a highly invasive seaweed.

Heroen Verbruggen; Lennert Tyberghein; Gareth S. Belton; Frédéric Mineur; Alexander Jueterbock; Galice Hoarau; C. Frederico D. Gurgel; Olivier De Clerck

The utility of species distribution models for applications in invasion and global change biology is critically dependent on their transferability between regions or points in time, respectively. We introduce two methods that aim to improve the transferability of presence-only models: density-based occurrence thinning and performance-based predictor selection. We evaluate the effect of these methods along with the impact of the choice of model complexity and geographic background on the transferability of a species distribution model between geographic regions. Our multifactorial experiment focuses on the notorious invasive seaweed Caulerpacylindracea (previously Caulerpa racemosa var. cylindracea ) and uses Maxent, a commonly used presence-only modeling technique. We show that model transferability is markedly improved by appropriate predictor selection, with occurrence thinning, model complexity and background choice having relatively minor effects. The data shows that, if available, occurrence records from the native and invaded regions should be combined as this leads to models with high predictive power while reducing the sensitivity to choices made in the modeling process. The inferred distribution model of Caulerpacylindracea shows the potential for this species to further spread along the coasts of Western Europe, western Africa and the south coast of Australia.


Molecular Ecology | 2013

Genomic divergence between the migratory and stationary ecotypes of Atlantic cod

Bård Ove Karlsen; Kevin Klingan; Åse Emblem; Tor Erik Jørgensen; Alexander Jueterbock; Tomasz Furmanek; Galice Hoarau; Steinar Johansen; Jarle Tryti Nordeide; Truls Moum

Atlantic cod displays a range of phenotypic and genotypic variations, which includes the differentiation into coastal stationary and offshore migratory types of cod that co‐occur in several parts of its distribution range and are often sympatric on the spawning grounds. Differentiation of these ecotypes may involve both historical separation and adaptation to ecologically distinct environments, the genetic basis of which is now beginning to be unravelled. Genomic analyses based on recent sequencing advances are able to document genomic divergence in more detail and may facilitate the exploration of causes and consequences of genome‐wide patterns. We examined genomic divergence between the stationary and migratory types of cod in the Northeast Atlantic, using next‐generation sequencing of pooled DNA from each of two population samples. Sequence data was mapped to the published cod genome sequence, arranged in more than 6000 scaffolds (611 Mb). We identified 25 divergent scaffolds (26 Mb) with a higher than average gene density, against a backdrop of overall moderate genomic differentiation. Previous findings of localized genomic divergence in three linkage groups were confirmed, including a large (15 Mb) genomic region, which seems to be uniquely involved in the divergence of migratory and stationary cod. The results of the pooled sequencing approach support and extend recent findings based on single‐nucleotide polymorphism markers and suggest a high degree of reproductive isolation between stationary and migratory cod in the North‐east Atlantic.


Biology Letters | 2006

Convergent adaptation to a marginal habitat by homoploid hybrids and polyploid ecads in the seaweed genus Fucus

James A. Coyer; Galice Hoarau; Gareth A. Pearson; Ester A. Serrão; Wytze T. Stam; Jeanine L. Olsen

Hybridization and polyploidy are two major sources of genetic variability that can lead to adaptation in new habitats. Most species of the brown algal genus Fucus are found along wave-swept rocky shores of the Northern Hemisphere, but some species have adapted to brackish and salt marsh habitats. Using five microsatellite loci and mtDNA RFLP, we characterize two populations of morphologically similar, muscoides-like Fucus inhabiting salt marshes in Iceland and Ireland. The Icelandic genotypes were consistent with Fucus vesiculosus×Fucus spiralis F1 hybrids with asymmetrical hybridization, whereas the Irish ones consisted primarily of polyploid F. vesiculosus.


Molecular Phylogenetics and Evolution | 2015

A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences

Marloes Poortvliet; Jeanine L. Olsen; Donald A. Croll; Giacomo Bernardi; Kelly M. Newton; Spyros Kollias; John O'Sullivan; Daniel Fernando; Guy Stevens; Felipe Galván Magaña; Bernard Seret; Sabine P. Wintner; Galice Hoarau

Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders.


Systematics and Biodiversity | 2013

Phylogeny and temporal divergence of the seagrass family Zosteraceae using one nuclear and three chloroplast loci

James A. Coyer; Galice Hoarau; John Kuo; A. Tronholm; Jan Veldsink; Jeanine L. Olsen

Seagrasses are among the most productive habitats in the marine realm, performing several crucial physical and biological ecosystem services. One group of seagrasses is the family Zosteraceae, which includes three to four genera and >20 species inhabiting temperate waters of both the northern and southern hemisphere. Species delineation depends on the type of data used, ranging from morphological to molecular. The main goal of this study was to better understand the evolution and divergence within the family, using a broad taxon sampling (>90 individuals) representing all species across the entire biogeographical range in both hemispheres and a four-locus approach (ITS1, matK, rbcL, psbA-trnH). The concatenated four-locus analysis supported earlier studies showing four genera in the family: Phyllospadix, Zostera, Nanozostera and Heterozostera. Four species were resolved within the genus Zostera, four within Nanozostera and two within Heterozostera. No distinction was revealed between H. nigracaulis (Australia) and H. chiliensis (Chile), suggesting a very recent introduction to Chile. A time-calibrated phylogeny using the rbcL gene revealed an early divergence of Zostera–Nanozostera/Heterozostera at 14.4 Ma, followed by a late Miocene radiation of Nanozostera–Heterozostera at 6.4 Ma, and the H. polychalymas–H. nigracaulis/tasmanica/chiliensis split at 2.3 Ma. Zostera asiatica diverged from other species of Zostera at 4.6 Ma. Phylogenetic analyses indicated that matK was the most informative single locus, whereas psbA-trnH (a widely used barcoding locus) was unable to resolve any entities within the Zosteraceae. A commonly used barcoding combination for plants, rbcL/matK, distinguished all genera, but was unable to resolve several species.


Marine Genomics | 2014

Thermal stress resistance of the brown alga Fucus serratus along the North-Atlantic coast: Acclimatization potential to climate change

Alexander Jueterbock; Spyros Kollias; Irina Smolina; Jorge M.O. Fernandes; James A. Coyer; Jeanine L. Olsen; Galice Hoarau

Seaweed-dominated communities are predicted to disappear south of 45° latitude on North-Atlantic rocky shores by 2200 because of climate change. The extent of predicted habitat loss, however, could be mitigated if the seaweeds physiology is sufficiently plastic to rapidly acclimatize to the warmer temperatures. The main objectives of this study were to identify whether the thermal tolerance of the canopy-forming seaweed Fucus serratus is population-specific and where temperatures are likely to exceed its tolerance limits in the next 200 years. We measured the stress response of seaweed samples from four populations (Norway, Denmark, Brittany and Spain) to common-garden heat stress (20 °C-36 °C) in both photosynthetic performance and transcriptomic upregulation of heat shock protein genes. The two stress indicators did not correlate and likely measured different cellular components of the stress response, but both indicators revealed population-specific differences, suggesting ecotypic differentiation. Our results confirmed that thermal extremes will regularly reach physiologically stressful levels in Brittany (France) and further south by the end of the 22nd century. Although heat stress resilience in photosynthetic performance was higher at the species southern distributional edge in Spain, the hsp expression pattern suggested that this edge-population experienced reduced fitness and limited responsiveness to further stressors. Thus, F. serratus may be unable to mitigate its predicted northward shift and may be at high risk to lose its center of genetic diversity and adaptability in Brittany (France). As it is an important intertidal key species, the disappearance of this seaweed will likely trigger major ecological changes in the entire associated ecosystem.


Seaweed Phylogeography | 2016

Climate Oscillations, Range Shifts and Phylogeographic Patterns of North Atlantic Fucaceae

João Neiva; Ester A. Serrão; Jorge Assis; Gareth A. Pearson; James A. Coyer; Jeanine L. Olsen; Galice Hoarau; Myriam Valero

Members of the seaweed family Fucaceae have been recurrent models in North Atlantic phylogeographic research; numerous studies have been published since 2000, and this review synthesizes their major findings. Fucoid species exhibited diverse responses to glacial–interglacial cycles, but evidence indicates there were a few common refugial areas such as north-western Iberia, the Celtic Sea (Brittany/Ireland) region and the North-west Atlantic. In genetically rich refugial areas, pervasive genetic breaks confirmed presently limited gene flow between adjacent distinct genetic groups. In contrast with the maintenance of sharp genetic breaks, most species experienced extensive migration during post-glacial expansion. Poleward migrations in the North-east Atlantic followed routes along north-western Ireland and the transgressing English Channel. These patterns support the role of density-blocking in maintaining sharp genetic breaks at contact zones, and of long-distance dispersal from range edges in mediating expansion into uninhabited regions. The data also indicate that expansions involve mostly the genetic groups located at range edges rather than the entire species’ gene pool, both poleward during interglacials and toward warmer regions during glacial periods. Fucoid expansions have also been linked to introgressive recombination of genomes at (and beyond) contact zones and to gene surfing leading to present large-scale dominance by alleles that were located at the expanding edge. Phylogeographic approaches have also proven useful to identify and track the sources of introductions linked to marine traffic. The integration of environmental niche models with molecular data have further allowed hindcasting southern distributions during glaciation and predicting the potentially negative effects of future climate warming, including the loss of vulnerable, unique trailing-edge lineages, as species’ ranges are predicted to continue shifting northward. Collectively, these studies have contributed greatly to elucidating the links between past and ongoing climatic shifts, range dynamics and geographical patterns of genetic variability in the North Atlantic.

Collaboration


Dive into the Galice Hoarau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge