Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Galina Churkina is active.

Publication


Featured researches published by Galina Churkina.


Nature | 2001

Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems

David S. Schimel; Joanna Isobel House; K. Hibbard; P. Bousquet; Philippe Ciais; Philippe Peylin; Bobby H. Braswell; Mike Apps; D. F. Baker; Alberte Bondeau; Josep G. Canadell; Galina Churkina; Wolfgang Cramer; A. S. Denning; Christopher B. Field; Pierre Friedlingstein; Christine L. Goodale; Martin Heimann; R. A. Houghton; Jerry M. Melillo; Berrien Moore; Daniel Murdiyarso; Ian R. Noble; Stephen W. Pacala; I. C. Prentice; M. R. Raupach; P. J. Rayner; Robert J. Scholes; Will Steffen; Christian Wirth

Knowledge of carbon exchange between the atmosphere, land and the oceans is important, given that the terrestrial and marine environments are currently absorbing about half of the carbon dioxide that is emitted by fossil-fuel combustion. This carbon uptake is therefore limiting the extent of atmospheric and climatic change, but its long-term nature remains uncertain. Here we provide an overview of the current state of knowledge of global and regional patterns of carbon exchange by terrestrial ecosystems. Atmospheric carbon dioxide and oxygen data confirm that the terrestrial biosphere was largely neutral with respect to net carbon exchange during the 1980s, but became a net carbon sink in the 1990s. This recent sink can be largely attributed to northern extratropical areas, and is roughly split between North America and Eurasia. Tropical land areas, however, were approximately in balance with respect to carbon exchange, implying a carbon sink that offset emissions due to tropical deforestation. The evolution of the terrestrial carbon sink is largely the result of changes in land use over time, such as regrowth on abandoned agricultural land and fire prevention, in addition to responses to environmental changes, such as longer growing seasons, and fertilization by carbon dioxide and nitrogen. Nevertheless, there remain considerable uncertainties as to the magnitude of the sink in different regions and the contribution of different processes.


Ecosystems | 1998

Contrasting climatic controls on the estimated productivity of global terrestrial biomes

Galina Churkina; Steven W. Running

ABSTRACT Net primary productivity (NPP) represents the greatest annual carbon flux from the atmosphere to the biosphere, is an important component of seasonal fluctuations in atmospheric CO2 concentrations, and is the most critical biotic component of the global carbon cycle. NPP measures products of major economic and social importance, such as crop yield and forest production. Given that global NPP can not be measured directly, model simulations must provide understanding of its global spatial and temporal dynamics. In this study, we used the biogeochemical model BIOME-BGC to simulate global terrestrial NPP and assessed relative importance of climatic controls (temperature, water availability, and radiation) in limiting NPP in the array of climatic combinations found globally. The degree of limitation on NPP by climatic controls was defined by using an empirical membership function. Results showed that temperature or water availability limited NPP over larger land areas (31% and 52%, respectively) than did radiation limitation (5%). Climatic controls appeared to be important in limiting productivity in most vegetation biomes, except for evergreen broadleaf forests. Nevertheless, there were areas of the globe (12%) where none of the climatic factors appeared to limit NPP. Our research has suggested that other environmental controls, such as nutrient availability or biological constraints, should then be considered. The wide distribution of NPP between zero and the upper boundary values in the correlation plots indicated that multivariate environmental balances, not single limiting factors, controlled biospheric productivity.


Nature Climate Change | 2014

Land management and land-cover change have impacts of similar magnitude on surface temperature

Sebastiaan Luyssaert; Mathilde Jammet; Paul C. Stoy; Stephen Estel; Julia Pongratz; Eric Ceschia; Galina Churkina; Axel Don; Karl-Heinz Erb; Morgan Ferlicoq; Bert Gielen; Thomas Grünwald; R. A. Houghton; Katja Klumpp; Alexander Knohl; Thomas E. Kolb; Tobias Kuemmerle; Tuomas Laurila; Annalea Lohila; Denis Loustau; Matthew J. McGrath; Patrick Meyfroidt; E.J. Moors; Kim Naudts; Kim Novick; Juliane Otto; Kim Pilegaard; Casimiro Pio; Serge Rambal; Corinna Rebmann

The direct effects of land-cover change on surface climate are increasingly well understood, but fewer studies have investigated the consequences of the trend towards more intensive land management practices. Now, research investigating the biophysical effects of temperate land-management changes reveals a net warming effect of similar magnitude to that driven by changing land cover.


Ecosystems | 2003

Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model

Galina Churkina; John Tenhunen; Peter E. Thornton; Eva Falge; J.A. Elbers; Markus Erhard; Thomas Grünwald; Andrew S. Kowalski; Üllar Rannik; Detlef F. Sprinz

AbstractThis paper provides the first steps toward a regional-scale analysis of carbon (C) budgets. We explore the ability of the ecosystem model BIOME-BGC to estimate the daily and annual C dynamics of four European coniferous forests and shifts in these dynamics in response to changing environmental conditions. We estimate uncertainties in the model results that arise from incomplete knowledge of site management history (for example, successional stage of forest). These uncertainties are especially relevant in regional-scale simulations, because this type of information is difficult to obtain. Although the model predicted daily C and water fluxes reasonably well at all sites, it seemed to have a better predictive capacity for the photosynthesis-related processes than for respiration. Leaf area index (LAI) was modeled accurately at two sites but overestimated at two others (as a result of poor long-term climate drivers and uncertainties in model parameterization). The overestimation of LAI (and consequently gross photosynthetic production (GPP)), in combination with reasonable estimates of the daily net ecosystem productivity (NEP) of those forests, also illustrates the problem with modeled respiration. The model results suggest that all four European forests have been net sinks of C at the rate of 100–300 gC/m2/y and that this C sequestration capacity would be 30%–70% lower without increasing nitrogen (N) deposition and carbon dioxide (CO2) concentrations. The magnitude of the forest responses was dependent not only on the rate of changes in environmental factors, but also on site-specific conditions such as climate and soil depth. We estimated that the modeled C exchange at the study sites was reduced by 50%–100% when model simulations were performed for climax forests rather than regrowing forests. The estimates of water fluxes were less sensitive to different initializations of state variables or environmental change scenarios than C fluxes.


Journal of Applied Meteorology and Climatology | 2008

Urbanization Impacts on the Climate in Europe: Numerical Experiments by the PSU–NCAR Mesoscale Model (MM5)

Kristina Trusilova; Martin Jung; Galina Churkina; Ute Karstens; Martin Heimann; Martin Claussen

Abstract The objective of this study is to investigate the effects of urban land on the climate in Europe on local and regional scales. Effects of urban land cover on the climate are isolated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) with a modified land surface scheme based on the Town Energy Budget model. Two model scenarios represent responses of climate to different states of urbanization in Europe: 1) no urban areas and 2) urban land in the actual state in the beginning of the twenty-first century. By comparing the simulations of these contrasting scenarios, spatial differences in near-surface temperature and precipitation are quantified. Simulated near-surface temperatures and an urban heat island for January and July over a period of 6 yr (2000–05) agree well with corresponding measurements at selected urban areas. The conversion of rural to urban land results in statistically significant changes to precipitati...


Carbon Balance and Management | 2007

Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake

Galina Churkina; Kristina Trusilova; Mona Vetter; Frank Dentener

BackgroundThe amount of reactive nitrogen deposited on land has doubled globally and become at least five-times higher in Europe, Eastern United States, and South East Asia since 1860 mostly because of increases in fertilizer production and fossil fuel burning. Because vegetation growth in the Northern Hemisphere is typically nitrogen-limited, increased nitrogen deposition could have an attenuating effect on rising atmospheric CO2 by stimulating the vegetation productivity and accumulation of carbon in biomass.ResultsThis study shows that elevated nitrogen deposition would not significantly enhance land carbon uptake unless we consider its effects on re-growing forests. Our results suggest that nitrogen enriched land ecosystems sequestered 0.62–2.33 PgC in the 1980s and 0.75–2.21 PgC in the 1990s depending on the proportion and age of re-growing forests. During these two decades land ecosystems are estimated to have absorbed 13–41% of carbon emitted by fossil fuel burning.ConclusionAlthough land ecosystems and especially forests with lifted nitrogen limitations have the potential to decelerate the rise of CO2 concentrations in the atmosphere, the effect is only significant over a limited period of time. The carbon uptake associated with forest re-growth and amplified by high nitrogen deposition will decrease as soon as the forests reach maturity. Therefore, assessments relying on carbon stored on land from enhanced atmospheric nitrogen deposition to balance fossil fuel emissions may be inaccurate.


Ecological Applications | 2008

Temperature sensitivity of the turnover times of soil organic matter in forests

Robbert Hakkenberg; Galina Churkina; Mirco Rodeghiero; Annett Börner; Axel Steinhof; Alessandro Cescatti

Soils represent the largest carbon pool in the terrestrial biosphere, and climate change might affect the main carbon fluxes associated with this pool. These fluxes are the production of aboveground litter and root litter, and decomposition of the soil organic matter (SOM) pool by soil microorganisms. Knowledge about the temperature sensitivity of the decomposition of different SOM fractions is crucial in order to understand how climate change might affect carbon storage in soils. In this study, the temperature sensitivity of the turnover times of three different SOM fractions (labile, intermediate, and stabilized) was investigated for 11 forest sites along a temperature gradient. Carbon-14 isotope analyses of the SOM fractions combined with a model provided estimates of their turnover times. The turnover times of the labile SOM fraction were not correlated with mean annual soil temperature. Therefore it was not possible to estimate temperature sensitivity for the labile SOM fraction. Given considerable evidence elsewhere for significant temperature sensitivities of labile SOM, lack of temperature sensitivity here most likely indicates limitations of the applied methodology for the labile SOM fraction. The turnover times of the intermediate and the stabilized SOM fractions were both correlated with mean annual soil temperatures. The temperature sensitivity of the stabilized SOM fraction was at least equal to that of the intermediate SOM fraction and possibly more than twice as high. A correction for confounding effects of soil acidity and clay content on the temperature sensitivities of the intermediate and stabilized SOM fractions was included in the analysis. The results as observed here for the three SOM fractions may have been influenced by (1) modeling assumptions for the estimation of SOM turnover times of leaf and needle longevities, constant annual carbon inputs, and steady-state SOM pools, (2) the occurrence of summer drought at some sites, (3) differences between sites in quality of the SOM fractions, or (4) the relatively small temperature range. Our results suggested that a 1 degree C increase in temperature could lead to decreases in turnover times of 4-11% and 8-16%, for the intermediate and stabilized SOM fractions, respectively.


Journal of Applied Meteorology and Climatology | 2009

On Climate Impacts of a Potential Expansion of Urban Land in Europe

Kristina Trusilova; Martin Jung; Galina Churkina

Abstract Over the last two decades, a disproportional increase of urban land area in comparison with the population growth has been observed in many countries of Europe, and this trend is predicted to continue. The conversion of vegetated land into urban land leads to a higher proportion of impervious surface area, to decline and change of vegetation cover, to artificial heat sources, and therefore to changes in climate. This study focuses on the implications of the expansion of urban land for the European climate at the local and regional scales. Regional climate simulations with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) coupled to the Town Energy Budget model are used to isolate effects of urban land expansion on temperature and precipitation. The study suggests that the expansion of current urban land by 40% would lead to an enlargement of regions affected by thermal stress by a factor of 2, whereas the intensity of the thermal stress does not change significantly. P...


Climatic Change | 2000

Investigating the Balance Between Timber Harvest and Productivity of Global Coniferous Forests Under Global Change

Galina Churkina; Steven W. Running

A widely used assumption in forestry is that thedemand for timber will exceed the maximum levelavailable from forests on a sustainable basis. In thisstudy, measurements of extracted timber and modeledforest productivity were used to investigate therelationship between harvested timber and naturalforest productivity for current conditions, and underglobal change scenario. The analysis was confined toconiferous forests and countries that have coniferousforests within their territories. Annual roundwoodproduction from the database of Food and AgricultureOrganization was used as an approximation of annualtimber harvest for each country. Annual stem primaryproductivity of coniferous forests was estimated usingthe BIOME-BGC model. Based on the current rates,annual timber extraction was extrapolated for eachcountry for the next 80 years. Then, on a countrybasis, the timber harvest was related to the modeledforest stem productivity, assuming that the area ofconiferous forest would stay unchanged for the next 80years.The results of this study suggest that globalconiferous forests currently produce more wood thanpeople consume, but that this gap will narrow in thefuture. The results also suggest that wood extractionmay reach forest regrowth by the middle of the nextcentury, even though most coniferous forests arelocated in high latitudes and may have an acceleratedstem growth associated with the joint effect ofclimate change and elevated carbon dioxideconcentration in the atmosphere.


Environmental Science & Technology | 2017

Effect of VOC Emissions from Vegetation on Air Quality in Berlin during a Heatwave

Galina Churkina; Friderike Kuik; Boris Bonn; Axel Lauer; Rüdiger Grote; Karolina Tomiak; T. Butler

The potential of emissions from urban vegetation combined with anthropogenic emissions to produce ozone and particulate matter has long been recognized. This potential increases with rising temperatures and may lead to severe problems with air quality in densely populated areas during heat waves. Here, we investigate how heat waves affect emissions of volatile organic compounds from urban/suburban vegetation and corresponding ground-level ozone and particulate matter. We use the Weather Research and Forecasting Model with atmospheric chemistry (WRF-Chem) with emissions of volatile organic compounds (VOCs) from vegetation simulated with MEGAN to quantify some of these feedbacks in Berlin, Germany, during the heat wave in 2006. The highest ozone concentration observed during that period was ∼200 μg/m3 (∼101 ppbV). The model simulations indicate that the contribution of biogenic VOC emissions to ozone formation is lower in June (9-11%) and August (6-9%) than in July (17-20%). On particular days within the analyzed heat wave period, this contribution increases up to 60%. The actual contribution is expected to be even higher as the model underestimates isoprene concentrations over urban forests and parks by 0.6-1.4 ppbv. Our study demonstrates that biogenic VOCs can considerably enhance air pollution during heat waves. We emphasize the dual role of vegetation for air quality and human health in cities during warm seasons, which is removal and lessening versus enhancement of air pollution. The results of our study suggest that reduction of anthropogenic sources of NOx, VOCs, and PM, for example, reduction of the motorized vehicle fleet, would have to accompany urban tree planting campaigns to make them really beneficial for urban dwellers.

Collaboration


Dive into the Galina Churkina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Butler

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Zoltán Barcza

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Dóra Hidy

Szent István University

View shared research outputs
Top Co-Authors

Avatar

László Haszpra

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Ciais

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge