Galina E. Zemtsova
Centers for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Galina E. Zemtsova.
Vector-borne and Zoonotic Diseases | 2012
Michael Levin; Lindsay F. Killmaster; Galina E. Zemtsova
Rickettsia conorii is the causative agent of Mediterranean spotted fever (MSF) and Israeli spotted fever (ISF) transmitted by the brown dog tick Rhipicephalus sanguineus. In areas where MSF or ISF are prevalent, dogs have high prevalence of R. conorii -neutralizing antibodies. However, the true role of dogs in the persistence of the R. conorii transmission cycle is unknown, and their reservoir competence for this pathogen has remained untested. We assessed the ability of dogs infected with R. conorii to transmit the pathogen to previously uninfected Rh. sanguineus ticks. Dogs were infected either via needle-inoculation of cultured rickettsiae or naturally via infected tick bite. Dogs were monitored for clinical signs of infection, for rickettsemia by PCR, and for seroconversion and were subjected to infestation with uninfected ticks at different time points. Rh. sanguineus larvae and nymphs successfully acquired the agent from both needle-inoculated and tick-infected dogs and transmitted it transtadially. Tick-infected dogs remained infectious to ticks for at least a month postinfection. The molted ticks were, in turn, infectious to naïve dogs. These results demonstrate that dogs are capable of acquiring R. conorii from infected Rh. sanguineus ticks and transmitting infection to cohorts of uninfected ticks, thus confirming for the first time that dogs are indeed competent reservoirs for R. conorii. In addition, dogs with different genetic backgrounds appear to differ in their susceptibility to R. conorii infection.
Experimental and Applied Acarology | 2010
Galina E. Zemtsova; Lindsay F. Killmaster; Kosta Y. Mumcuoglu; Michael L. Levin
Rickettsia conorii is widely distributed in Europe, Asia, and Africa. The brown dog tick, Rhipicephalus sanguineus, is the recognized vector of R. conorii. In this study, we assessed the efficiency of R. conorii israelensis transmission between co-feeding Rh. sanguineus ticks. Infected Rh. sanguineus adults and uninfected nymphs were fed simultaneously upon either naïve dogs or a dog previously exposed to this agent. When ticks were placed upon naïve dogs, 92–100% of nymphs acquired the infection and 80–88% of infected engorged nymphs transmitted it transstadially. When ticks were placed upon a seropositive dog, only 8–28.5% of recipient nymphs became infected. Our results establish the first evidence for efficient natural transmission of R. conorii israelensis between co-feeding ticks upon both naïve and seropositive dogs. This route of transmission can ensure continuous circulation of R. conorii israelensis in tick vectors even in the absence of naïve reservoir hosts.
Vector-borne and Zoonotic Diseases | 2012
Jennifer H. McQuiston; Galina E. Zemtsova; Jamie Perniciaro; Mark Hutson; Joseph Singleton; William L. Nicholson; Michael Levin
Several spotted fever group rickettsiae (SFGR) previously believed to be nonpathogenic are speculated to contribute to infections commonly misdiagnosed as Rocky Mountain spotted fever (RMSF) in the United States, but confirmation is difficult in cases with mild or absent systemic symptoms. We report an afebrile rash illness occurring in a patient 4 days after being bitten by a Rickettsia montanensis-positive Dermacentor variabilis tick. The patients serological profile was consistent with confirmed SFGR infection.
The Journal of Infectious Diseases | 2015
Mike Flint; Christin H. Goodman; Scott W. Bearden; Dianna M. Blau; Brian R. Amman; Alison J. Basile; Jessica A. Belser; Eric Bergeron; Michael D. Bowen; Aaron C. Brault; Shelley Campbell; Ayan K. Chakrabarti; Kimberly A. Dodd; Bobbie R. Erickson; Molly M. Freeman; Aridth Gibbons; Lisa Wiggleton Guerrero; John D. Klena; R. Ryan Lash; Michael K. Lo; Laura K. McMullan; Gbetuwa Momoh; James L. Massally; Augustine Goba; Christopher D. Paddock; Rachael A. Priestley; Meredith Pyle; Mark Rayfield; Brandy J. Russell; Johanna S. Salzer
In August 2014, the Viral Special Pathogens Branch of the US Centers for Disease Control and Prevention established a field laboratory in Sierra Leone in response to the ongoing Ebola virus outbreak. Through March 2015, this laboratory tested >12 000 specimens from throughout Sierra Leone. We describe the organization and procedures of the laboratory located in Bo, Sierra Leone.
Experimental and Applied Acarology | 2009
Michael L. Levin; L. Killmaster; Galina E. Zemtsova; D. Grant; Kosta Y. Mumcuoglu; Marina E. Eremeeva
Rickettsia conorii, the etiologic agent of Mediterranean spotted fever is widely distributed in Southern Europe, the Middle East, Africa, India and the Caspian region. In the Mediterranean region, the brown dog tick, Rhipicephalus sanguineus, is the recognized vector of R. conorii. To study tick-pathogen relationships and pathogenesis of infection caused in model animals by the bite of an infected tick, we attempted to establish a laboratory colony of Rh. sanguineus persistently infected with R. conorii. Rhipicephalus sanguineus ticks of North American and Mediterranean origin were exposed to R. conorii isolates of African (R. conorii conorii strain Malish) and Mediterranean (R. conorii israelensis strain ISTT) origin. Feeding of ticks upon infected mice and dogs, intra-hemocoel inoculation, and submersion in suspensions of purified rickettsiae were used to introduce the pathogen into uninfected ticks. Feeding success, molting success and the longevity of molted ticks were measured to assess the effects of R. conorii on the survival of Rh. sanguineus. In concordance with previously published results, Rh. sanguineus larvae and nymphs from both North American and Mediterranean colonies exposed to R. conorii conorii Malish experienced high mortality during feeding and molting or immediately after. The prevalence of infection in surviving ticks did not exceed 5%. On the other hand, exposure to ISTT strain had lesser effect on tick survival and resulted in 35–66% prevalence of infection. Rh. sanguineus of Mediterranean origin were more susceptible to infection with either strain of R. conorii than those from North America. Previous experimental studies had demonstrated transovarial and transstadial transmission of R. conorii in Rh. sanguineus; however, our data suggest that different strains of R. conorii may employ different means of maintenance in nature. The vertebrate host may be a more important reservoir than previously thought, or co-feeding transmission between different generations of ticks may obviate or lessen the requirement for transovarial maintenance of R. conorii.
Clinical Infectious Diseases | 2016
Kyle Rosenke; Jennifer Adjemian; Vincent J. Munster; Andrea Marzi; Darryl Falzarano; Clayton O. Onyango; Melvin Ochieng; Bonventure Juma; Robert J. Fischer; Joseph Prescott; David Safronetz; Victor Omballa; Collins Owuor; Thomas Hoenen; Allison Groseth; Cynthia Martellaro; Galina E. Zemtsova; Joshua S. Self; Trenton Bushmaker; Kristin L. McNally; Thomas Rowe; Shannon L. Emery; Friederike Feldmann; Brandi N. Williamson; Sonja M. Best; Tolbert Nyenswah; Allen Grolla; James E. Strong; Gary P. Kobinger; Fatorma K. Bolay
BACKGROUND The ongoing Ebola outbreak in West Africa has resulted in 28 646 suspected, probable, and confirmed Ebola virus infections. Nevertheless, malaria remains a large public health burden in the region affected by the outbreak. A joint Centers for Disease Control and Prevention/National Institutes of Health diagnostic laboratory was established in Monrovia, Liberia, in August 2014, to provide laboratory diagnostics for Ebola virus. METHODS All blood samples from suspected Ebola virus-infected patients admitted to the Médecins Sans Frontières ELWA3 Ebola treatment unit in Monrovia were tested by quantitative real-time polymerase chain reaction for the presence of Ebola virus and Plasmodium species RNA. Clinical outcome in laboratory-confirmed Ebola virus-infected patients was analyzed as a function of age, sex, Ebola viremia, and Plasmodium species parasitemia. RESULTS The case fatality rate of 1182 patients with laboratory-confirmed Ebola virus infections was 52%. The probability of surviving decreased with increasing age and decreased with increasing Ebola viral load. Ebola virus-infected patients were 20% more likely to survive when Plasmodium species parasitemia was detected, even after controlling for Ebola viral load and age; those with the highest levels of parasitemia had a survival rate of 83%. This effect was independent of treatment with antimalarials, as this was provided to all patients. Moreover, treatment with antimalarials did not affect survival in the Ebola virus mouse model. CONCLUSIONS Plasmodium species parasitemia is associated with an increase in the probability of surviving Ebola virus infection. More research is needed to understand the molecular mechanism underlying this remarkable phenomenon and translate it into treatment options for Ebola virus infection.
Journal of Medical Entomology | 2014
Lindsay F. Killmaster; Amanda D. Loftis; Galina E. Zemtsova; Michael L. Levin
ABSTRACT Amblyomma americanum, the lone star tick, is the most common and most aggressive human biting tick in the Southeastern United States. It is known to transmit the agents of human ehrlichioses, Ehrlichia chaffeensis and Ehrlichia ewingii. In addition, it carries agents of unspecified pathogenicity to humans, including Rickettsia amblyommii, Borrelia lonestari, and the newly emerging Panola Mountain Ehrlichia (PME). Surveillance of these ticks for recognized or emerging pathogens is necessary for assessing the risk of human infection. From 2005 to 2009, we surveyed A. americanum ticks from four locations in the state of Georgia. Ticks (1,183 adults, 2,954 nymphs, and 99 larval batches) were tested using a multiplex real-time polymerase chain reaction (PCR) assay designed to detect and discriminate DNA from Rickettsia spp., E. chaffeensis, and E. ewingii, This assay was capable of detecting as few as 10 gene copies of the aforementioned agents. Ticks were also tested for PME and B. lonestari by nested PCR. The prevalence of infection ranged from 0 to 2.5% for E. chaffeensis, 0 to 3.9% for E. ewingii, 0 to 2.2% for PME, 17 to 83.1% for R. amblyommii, and 0 to 3.1% for B. lonestari. There were 46 (4.1%) individual adults positive for two agents, and two females that were each positive for three agents. Two larval batches were positive for both B. lonestari and R. amblyommii, indicating the potential for transovarial transmission of both agents from a single female. Although infrequent in occurrence, the dynamics of coinfections in individual ticks should be explored further, given the potential implications for differential diagnosis and severity of human illness.
Emerging Infectious Diseases | 2016
Emmie de Wit; Darryl Falzarano; Clayton O. Onyango; Kyle Rosenke; Andrea Marzi; Melvin Ochieng; Bonventure Juma; Robert J. Fischer; Joseph Prescott; David Safronetz; Victor Omballa; Collins Owuor; Thomas Hoenen; Allison Groseth; Galina E. Zemtsova; Joshua S. Self; Trenton Bushmaker; Kristin L. McNally; Thomas Rowe; Shannon L. Emery; Friederike Feldmann; Brandi N. Williamson; Tolbert Nyenswah; Allen Grolla; James E. Strong; Gary P. Kobinger; Ute Stroeher; Mark Rayfield; Fatorma K. Bolay; Kathryn C. Zoon
Malaria is a major public health concern in the countries affected by the Ebola virus disease epidemic in West Africa. We determined the feasibility of using molecular malaria diagnostics during an Ebola virus disease outbreak and report the incidence of Plasmodium spp. parasitemia in persons with suspected Ebola virus infection.
Ticks and Tick-borne Diseases | 2014
Michael L. Levin; Galina E. Zemtsova; Merrill Montgomery; Lindsay F. Killmaster
A number of spotted fever group (SFG) rickettsiae cause serious infections in humans. Several antigenically related rickettsial agents may coexist within the same geographical area, and humans or vertebrate hosts may be sequentially exposed to multiple SFG agents. We assessed whether exposure of a vertebrate reservoir to one SFG Rickettsia will affect the hosts immune response to a related pathogen and the efficiency of transmission to uninfected ticks. Two pairs of dogs were each infected with either Rickettsia massiliae or Rickettsia conorii israelensis, and their immune response was monitored twice weekly by IFA. The four immunized dogs and a pair of naïve dogs were each challenged with R. conorii israelensis-infected Rhipicephalus sanguineus nymphs. Uninfected Rh. sanguineus larvae were acquisition-fed on the dogs on days 1, 7, and 14 post-challenge. These ticks were tested for the presence of rickettsial DNA after molting to the nymphal stage. The naive dogs became infected with R. conorii israelensis and were infectious to ticks for at least 3 weeks, whereas reservoir competence of dogs previously infected with either R. massiliae or R. conorii was significantly diminished. This opens an opportunity for decreasing the efficiency of transmission and propagation of pathogenic Rickettsia in natural foci by immunizing the primary hosts with closely related nonpathogenic SFG bacteria. However, neither homologous immunization nor cross-immunization significantly affected the efficiency of R. conorii transmission between cofeeding infected nymphs and uninfected larvae. At high densities of ticks, the efficiency of cofeeding transmission may be sufficient for yearly amplification and persistent circulation of a rickettsial pathogen in the vector population.
PLOS ONE | 2015
Galina E. Zemtsova; Merrill Montgomery; Michael L. Levin
Studies on the natural transmission cycles of zoonotic pathogens and the reservoir competence of vertebrate hosts require methods for reliable diagnosis of infection in wild and laboratory animals. Several PCR-based applications have been developed for detection of infections caused by Spotted Fever group Rickettsia spp. in a variety of animal tissues. These assays are being widely used by researchers, but they differ in their sensitivity and reliability. We compared the sensitivity of five previously published conventional PCR assays and one SYBR green-based real-time PCR assay for the detection of rickettsial DNA in blood and tissue samples from Rickettsia- infected laboratory animals (n = 87). The real-time PCR, which detected rickettsial DNA in 37.9% of samples, was the most sensitive. The next best were the semi-nested ompA assay and rpoB conventional PCR, which detected as positive 18.4% and 14.9% samples respectively. Conventional assays targeting ompB, gltA and hrtA genes have been the least sensitive. Therefore, we recommend the SYBR green-based real-time PCR as a tool for the detection of rickettsial DNA in animal samples due to its higher sensitivity when compared to more traditional assays.