Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Galina Florova is active.

Publication


Featured researches published by Galina Florova.


Journal of Bacteriology | 2005

Alteration of the Fatty Acid Profile of Streptomyces coelicolor by Replacement of the Initiation Enzyme 3-Ketoacyl Acyl Carrier Protein Synthase III (FabH)

Yongli Li; Galina Florova; Kevin A. Reynolds

The first elongation step of fatty acid biosynthesis by a type II dissociated fatty acid synthases is catalyzed by 3-ketoacyl-acyl carrier protein (ACP) synthase III (KASIII, FabH). This enzyme, encoded by the fabH gene, catalyzes a decarboxylative condensation between an acyl coenzyme A (CoA) primer and malonyl-ACP. In organisms such as Escherichia coli, which generate only straight-chain fatty acids (SCFAs), FabH has a substrate preference for acetyl-CoA. In streptomycetes and other organisms which produce a mixture of both SCFAs and branched-chain fatty acids (BCFAs), FabH has been shown to utilize straight- and branched-chain acyl-CoA substrates. We report herein the generation of a Streptomyces coelicolor mutant (YL/ecFabH) in which the chromosomal copy of the fabH gene has been replaced and the essential process of fatty acid biosynthesis is initiated by plasmid-based expression of the E. coli FabH (bearing only 35% amino acid identity to the Streptomyces enzyme). The YL/ecFabH mutant produces predominantly SCFAs (86%). In contrast, BCFAs predominate (approximately 70%) in both the S. coelicolor parental strain and S. coelicolor YL/sgFabH (a deltafabH mutant carrying a plasmid expressing the Streptomyces glaucescens FabH). These results provide the first unequivocal evidence that the substrate specificity of FabH observed in vitro is a determinant of the fatty acid made in an organism. The YL/ecFabH strain grows significantly slower on both solid and liquid media. The levels of FabH activity in cell extracts of YL/ecFabH were also significantly lower than those in cell extracts of YL/sgFabH, suggesting that a decreased rate of fatty acid synthesis may account for the observed decreased growth rate. The production of low levels of BCFAs in YL/ecFabH suggests either that the E. coli FabH is more tolerant of different acyl-CoAs substrates than previously thought or that there is an additional pathway for initiation of BCFA biosynthesis in Streptomyces coelicolor.


Journal of Biological Chemistry | 2011

Effects of extracellular DNA on plasminogen activation and fibrinolysis.

Andrey A. Komissarov; Galina Florova; Steven Idell

Background: Elevated levels of extracellular DNA and aberrant fibrinolysis occur in a range of severe diseases. Results: DNA competes with fibrin for fibrinolytic enzymes. DNA stimulates fibrin-independent plasminogen activation and increases enzyme susceptibility to serpins. Conclusion: DNA is a macromolecular template that both potentiates and inhibits fibrinolysis. Significance: Understanding the interaction of DNA with the fibrinolytic system could improve the outcomes of fibrinolytic therapy. The increased levels of extracellular DNA found in a number of disorders involving dysregulation of the fibrinolytic system may affect interactions between fibrinolytic enzymes and inhibitors. Double-stranded (ds) DNA and oligonucleotides bind tissue-(tPA) and urokinase (uPA)-type plasminogen activators, plasmin, and plasminogen with submicromolar affinity. The binding of enzymes to DNA was detected by EMSA, steady-state, and stopped-flow fluorimetry. The interaction of dsDNA/oligonucleotides with tPA and uPA includes a fast bimolecular step, followed by two monomolecular steps, likely indicating slow conformational changes in the enzyme. DNA (0.1–5.0 μg/ml), but not RNA, potentiates the activation of Glu- and Lys-plasminogen by tPA and uPA by 480- and 70-fold and 10.7- and 17-fold, respectively, via a template mechanism similar to that known for fibrin. However, unlike fibrin, dsDNA/oligonucleotides moderately affect the reaction between plasmin and α2-antiplasmin and accelerate the inactivation of tPA and two chain uPA by plasminogen activator inhibitor-1 (PAI-1), which is potentiated by vitronectin. dsDNA (0.1–1.0 μg/ml) does not affect the rate of fibrinolysis by plasmin but increases by 4–5-fold the rate of fibrinolysis by Glu-plasminogen/plasminogen activator. The presence of α2-antiplasmin abolishes the potentiation of fibrinolysis by dsDNA. At higher concentrations (1.0–20 μg/ml), dsDNA competes for plasmin with fibrin and decreases the rate of fibrinolysis. dsDNA/oligonucleotides incorporated into a fibrin film also inhibit fibrinolysis. Thus, extracellular DNA at physiological concentrations may potentiate fibrinolysis by stimulating fibrin-independent plasminogen activation. Conversely, DNA could inhibit fibrinolysis by increasing the susceptibility of fibrinolytic enzymes to serpins.


Journal of Industrial Microbiology & Biotechnology | 1998

The shikimic acid pathway and polyketide biosynthesis

Daniel J Wilson; S. Patton; Galina Florova; V. Hale; Kevin A. Reynolds

The shikimic acid pathway, ubiquitous in microorganisms and plants, provides precursors for the biosynthesis of primary metabolites such as the aromatic amino acids and folic acid. Several branchpoints from the primary metabolic pathway also provide aromatic and, in some unusual cases, nonaromatic precursors for the biosynthesis of secondary metabolites. We report herein recent progress in the analysis of two unusual branches of the shikimic acid pathway in streptomycetes; the formation of the cyclohexanecarboxylic acid (CHC)-derived moiety of the antifungal agent ansatrienin and the dihydroxycyclohexanecarboxylic acid (DHCHC) starter unit for the biosynthesis of the immunosuppressant ascomycin. A gene for 1-cyclohexenylcarbonyl-CoA reductase, chcA, which plays a role in catalyzing three of the reductive steps leading from shikimic acid to CHC has been characterized from Streptomyces collinus. A cluster of six open reading frames (ORFs) has been identified by sequencing in both directions from chcA and the putative role of these in CHC biosynthesis is discussed. The individual steps involved in the biosynthesis of DHCHC from shikimic acid in Streptomyces hygroscopicus var ascomyceticus has been delineated and shown to be stereochemically and enzymatically distinct from the CHC pathway. A dehydroquinate dehydratase gene (dhq) likely involved in providing shikimic acid for both DHCHC biosynthesis and primary metabolism has been cloned, sequenced and characterized.


Journal of Industrial Microbiology & Biotechnology | 2006

Multiple pathways for acetate assimilation in Streptomyces cinnamonensis.

Konstantin Akopiants; Galina Florova; Chaoxuan Li; Kevin A. Reynolds

In most bacteria acetate assimilation is accomplished via the glyoxylate pathway. Isocitrate lyase (ICL) and malate synthase (MS) are two key enzymes of this pathway, which results in the net generation of one molecule of succinyl-CoA from two acetyl-CoA molecules. Genetic and biochemical data have shown that genes encoding these key enzymes are present in streptomycetes, yet there has been no clear demonstration of the importance of these genes to acetate assimilation. In fact, for Streptomyces collinus an alternative butyryl-CoA pathway has been shown to be critical for growth on acetate as a sole carbon source. Crotonyl-CoA reductase (CCR) is a key enzyme in this pathway and catalyzes the last step of the conversion of 2-acetyl-CoA molecules to butyryl-CoA. In Streptomyces cinnamonensis C730.1, it has been shown that CCR and this butyryl-CoA pathway provide the majority of methylmalonyl-CoA and ethylmalonyl-CoA for monensin A biosynthesis in an oil-based fermentation medium. We have cloned a MS homologue gene from this strain. Reverse transcription and direct enzyme assays demonstrated that neither this nor other MS genes were expressed during fermentation in an oil-based fermentation of either the C730.1 or L1 strain (a ccr mutant). Similarly, no ICL activity could be detected. The C730.1 but not the L1 strain was able to grow on acetate as a sole carbon source. The Streptomyces coelicoloraceA and aceB2 genes encoding ICL and MS were cloned into a Streptomyces expression plasmid (a derivative of pSET152) to create pExIM1. Enzyme assays and transcript analyses demonstrated expression of both of these proteins in C730.1/pExIM1 and L1/pExIM1 grown in an oil-based fermentation and tryptic soy broth media. Nonetheless, L1/pExIM1, like L1, was unable to grow on acetate as a sole carbon source, and was unable to efficiently generate precursors for monensin A biosynthesis in an oil-based fermentation, indicating that the additional presence of these two enzyme activities does not permit a functional glyoxylate cycle to occur. UV mutagenesis of S. cinnamonensis L1 and L1/pExIM1 led to mutants which were able to grow efficiently on acetate despite a block in the butyryl-CoA pathway. Analysis of enzyme activity and monensin production from these mutants in an oil-based fermentation demonstrated that neither the glyoxylate cycle nor the butyryl-CoA pathway function, suggesting the possibility of alternative pathways of acetate assimilation.


Journal of Biological Chemistry | 2015

Plasminogen Activator Inhibitor-1 Suppresses Profibrotic Responses in Fibroblasts from Fibrotic Lungs

Amarnath S. Marudamuthu; Shwetha K. Shetty; Yashodhar P. Bhandary; Sophia Karandashova; Michael A. Thompson; Venkatachalem Sathish; Galina Florova; Taryn B. Hogan; Christina M. Pabelick; Y. S. Prakash; Yoshikazu Tsukasaki; Jian Fu; Mitsuo Ikebe; Steven Idell; Sreerama Shetty

Background: The long term survival outcome of patients with IPF is bleak, with a paucity of effective treatments. Results: The changes in baseline PAI-1 expression regulate fibroblast activation and expansion in fibrotic lung diseases. Conclusion: Targeted restoration, rather than inhibition of PAI-1 in activated fibroblasts, mitigates fibrosis. Significance: This study defines a new role of PAI-1 in the pathogenesis of fibrosing lung diseases, including IPF. Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive interstitial scarification. A hallmark morphological lesion is the accumulation of myofibroblasts or fibrotic lung fibroblasts (FL-fibroblasts) in areas called fibroblastic foci. We previously demonstrated that the expression of both urokinase-type plasminogen activator (uPA) and the uPA receptor are elevated in FL-fibroblasts from the lungs of patients with IPF. FL-fibroblasts isolated from human IPF lungs and from mice with bleomycin-induced pulmonary fibrosis showed an increased rate of proliferation compared with normal lung fibroblasts (NL-fibroblasts) derived from histologically “normal” lung. Basal expression of plasminogen activator inhibitor-1 (PAI-1) in human and murine FL-fibroblasts was reduced, whereas collagen-I and α-smooth muscle actin were markedly elevated. Conversely, alveolar type II epithelial cells surrounding the fibrotic foci in situ, as well as those isolated from IPF lungs, showed increased activation of caspase-3 and PAI-1 with a parallel reduction in uPA expression. Transduction of an adenovirus PAI-1 cDNA construct (Ad-PAI-1) suppressed expression of uPA and collagen-I and attenuated proliferation in FL-fibroblasts. On the contrary, inhibition of basal PAI-1 in NL-fibroblasts increased collagen-I and α-smooth muscle actin. Fibroblasts isolated from PAI-1-deficient mice without lung injury also showed increased collagen-I and uPA. These changes were associated with increased Akt/phosphatase and tensin homolog proliferation/survival signals in FL-fibroblasts, which were reversed by transduction with Ad-PAI-1. This study defines a new role of PAI-1 in the control of fibroblast activation and expansion and its role in the pathogenesis of fibrosing lung disease and, in particular, IPF.


American Journal of Respiratory Cell and Molecular Biology | 2013

Plasminogen Activator Inhibitor-1 Deficiency Augments Visceral Mesothelial Organization, Intrapleural Coagulation, and Lung Restriction in Mice with Carbon Black/Bleomycin–Induced Pleural Injury

Torry A. Tucker; Ann Jeffers; Alexia Alvarez; Shuzi Owens; Kathleen Koenig; Brandon Quaid; Andrey A. Komissarov; Galina Florova; Hema Kothari; Usha R. Pendurthi; L. Vijaya Mohan Rao; Steven Idell

Local derangements of fibrin turnover and plasminogen activator inhibitor (PAI)-1 have been implicated in the pathogenesis of pleural injury. However, their role in the control of pleural organization has been unclear. We found that a C57Bl/6j mouse model of carbon black/bleomycin (CBB) injury demonstrates pleural organization resulting in pleural rind formation (14 d). In transgenic mice overexpressing human PAI-1, intrapleural fibrin deposition was increased, but visceral pleural thickness, lung volumes, and compliance were comparable to wild type. CBB injury in PAI-1(-/-) mice significantly increased visceral pleural thickness (P < 0.001), elastance (P < 0.05), and total lung resistance (P < 0.05), while decreasing lung compliance (P < 0.01) and lung volumes (P < 0.05). Collagen, α-smooth muscle actin, and tissue factor were increased in the thickened visceral pleura of PAI-1(-/-) mice. Colocalization of α-smooth muscle actin and calretinin within pleural mesothelial cells was increased in CBB-injured PAI-1(-/-) mice. Thrombin, factor Xa, plasmin, and urokinase induced mesothelial-mesenchymal transition, tissue factor expression, and activity in primary human pleural mesothelial cells. In PAI-1(-/-) mice, D-dimer and thrombin-antithrombin complex concentrations were increased in pleural lavage fluids. The results demonstrate that PAI-1 regulates CBB-induced pleural injury severity via unrestricted fibrinolysis and cross-talk with coagulation proteases. Whereas overexpression of PAI-1 augments intrapleural fibrin deposition, PAI-1 deficiency promotes profibrogenic alterations of the mesothelium that exacerbate pleural organization and lung restriction.


American Journal of Respiratory Cell and Molecular Biology | 2013

Intrapleural Adenoviral Delivery of Human Plasminogen Activator Inhibitor–1 Exacerbates Tetracycline-Induced Pleural Injury in Rabbits

Sophia Karandashova; Galina Florova; Ali O. Azghani; Andrey A. Komissarov; Kathy Koenig; Torry A. Tucker; Timothy Craig Allen; Kris Stewart; Amy Tvinnereim; Steven Idell

Elevated concentrations of plasminogen activator inhibitor-1 (PAI-1) are associated with pleural injury, but its effects on pleural organization remain unclear. A method of adenovirus-mediated delivery of genes of interest (expressed under a cytomegalovirus promoter) to rabbit pleura was developed and used with lacZ and human (h) PAI-1. Histology, β-galactosidase staining, Western blotting, enzymatic and immunohistochemical analyses of pleural fluids (PFs), lavages, and pleural mesothelial cells were used to evaluate the efficiency and effects of transduction. Transduction was selective and limited to the pleural mesothelial monolayer. The intrapleural expression of both genes was transient, with their peak expression at 4 to 5 days. On Day 5, hPAI-1 (40-80 and 200-400 nM of active and total hPAI-1 in lavages, respectively) caused no overt pleural injury, effusions, or fibrosis. The adenovirus-mediated delivery of hPAI-1 with subsequent tetracycline-induced pleural injury resulted in a significant exacerbation of the pleural fibrosis observed on Day 5 (P = 0.029 and P = 0.021 versus vehicle and adenoviral control samples, respectively). Intrapleural fibrinolytic therapy (IPFT) with plasminogen activators was effective in both animals overexpressing hPAI-1 and control animals with tetracycline injury alone. An increase in intrapleural active PAI-1 (from 10-15 nM in control animals to 20-40 nM in hPAI-1-overexpressing animals) resulted in the increased formation of PAI-1/plasminogen activator complexes in vivo. The decrease in intrapleural plasminogen-activating activity observed at 10 to 40 minutes after IPFT correlates linearly with the initial concentration of active PAI-1. Therefore, active PAI-1 in PFs affects the outcome of IPFT, and may be both a biomarker of pleural injury and a molecular target for its treatment.


American Journal of Respiratory Cell and Molecular Biology | 2012

Lipoprotein Receptor–Related Protein 1 Regulates Collagen 1 Expression, Proteolysis, and Migration in Human Pleural Mesothelial Cells

Torry A. Tucker; LaTerrica Williams; Kathleen Koenig; Hema Kothari; Andrey A. Komissarov; Galina Florova; Andrew P. Mazar; Timothy Craig Allen; Khalil Bdeir; L. Vijaya Mohan Rao; Steven Idell

The low-density lipoprotein receptor-related protein 1 (LRP-1) binds and can internalize a diverse group of ligands, including members of the fibrinolytic pathway, urokinase plasminogen activator (uPA), and its receptor, uPAR. In this study, we characterized the role of LRP-1 in uPAR processing, collagen synthesis, proteolysis, and migration in pleural mesothelial cells (PMCs). When PMCs were treated with the proinflammatory cytokines TNF-α and IL-1β, LRP-1 significantly decreased at the mRNA and protein levels (70 and 90%, respectively; P < 0.05). Consequently, uPA-mediated uPAR internalization was reduced by 80% in the presence of TNF-α or IL-1β (P < 0.05). In parallel studies, LRP-1 neutralization with receptor-associated protein (RAP) significantly reduced uPA-dependent uPAR internalization and increased uPAR stability in PMCs. LRP-1-deficient cells demonstrated increased uPAR t(1/2) versus LRP-1-expressing PMCs. uPA enzymatic activity was also increased in LRP-1-deficient and neutralized cells, and RAP potentiated uPA-dependent migration in PMCs. Collagen expression in PMCs was also induced by uPA, and the effect was potentiated in RAP-treated cells. These studies indicate that TNF-α and IL-1β regulate LRP-1 in PMCs and that LRP-1 thereby contributes to a range of pathophysiologically relevant responses of these cells.


American Journal of Respiratory Cell and Molecular Biology | 2015

Targeting of plasminogen activator inhibitor 1 improves fibrinolytic therapy for tetracycline-induced pleural injury in rabbits

Galina Florova; Ali Azghani; Sophia Karandashova; Chris Schaefer; Kathleen Koenig; Kris Stewart-Evans; Paul Declerck; Steven Idell; Andrey A. Komissarov

Endogenous active plasminogen activator inhibitor 1 (PAI-1) was targeted in vivo with monoclonal antibodies (mAbs) that redirect its reaction with proteinases to the substrate branch. mAbs were used as an adjunct to prourokinase (single-chain [sc] urokinase [uPA]) intrapleural fibrinolytic therapy (IPFT) of tetracycline-induced pleural injury in rabbits. Outcomes of scuPA IPFT (0.25 or 0.0625 mg/kg) with 0.5 mg/kg of mouse IgG or mAbs (MA-33H1F7 and MA-8H9D4) were assessed at 24 hours. Pleural fluid (PF) was collected at 0, 10, 20, and 40 minutes and 24 hours after IPFT and analyzed for plasminogen activating (PA), uPA, fibrinolytic activities, levels of total plasmin/plasminogen, α-macroglobulin (αM), mAbs/IgG antigens, free active uPA, and αM/uPA complexes. Anti-PAI-1 mAbs, but not mouse IgG, delivered with an eightfold reduction in the minimal effective dose of scuPA (from 0.5 to 0.0625 mg/kg), improved the outcome of IPFT (P < 0.05). mAbs and IgG were detectable in PFs at 24 hours. Compared with identical doses of scuPA alone or with IgG, treatment with scuPA and anti-PAI-1 mAbs generated higher PF uPA amidolytic and PA activities, faster formation of αM/uPA complexes, and slower uPA inactivation. However, PAI-1 targeting did not significantly affect intrapleural fibrinolytic activity or levels of total plasmin/plasminogen and αM antigens. Targeting PAI-1 did not induce bleeding, and rendered otherwise ineffective doses of scuPA able to improve outcomes in tetracycline-induced pleural injury. PAI-1-neutralizing mAbs improved IPFT by increasing the durability of intrapleural PA activity. These results suggest a novel, well-tolerated IPFT strategy that is tractable for clinical development.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

Active α-macroglobulin is a reservoir for urokinase after fibrinolytic therapy in rabbits with tetracycline-induced pleural injury and in human pleural fluids.

Andrey A. Komissarov; Galina Florova; Ali O. Azghani; Sophia Karandashova; Anna Kurdowska; Steven Idell

Intrapleural processing of prourokinase (scuPA) in tetracycline (TCN)-induced pleural injury in rabbits was evaluated to better understand the mechanisms governing successful scuPA-based intrapleural fibrinolytic therapy (IPFT), capable of clearing pleural adhesions in this model. Pleural fluid (PF) was withdrawn 0-80 min and 24 h after IPFT with scuPA (0-0.5 mg/kg), and activities of free urokinase (uPA), plasminogen activator inhibitor-1 (PAI-1), and uPA complexed with α-macroglobulin (αM) were assessed. Similar analyses were performed using PFs from patients with empyema, parapneumonic, and malignant pleural effusions. The peak of uPA activity (5-40 min) reciprocally correlated with the dose of intrapleural scuPA. Endogenous active PAI-1 (10-20 nM) decreased the rate of intrapleural scuPA activation. The slow step of intrapleural inactivation of free uPA (t1/2(β) = 40 ± 10 min) was dose independent and 6.7-fold slower than in blood. Up to 260 ± 70 nM of αM/uPA formed in vivo [second order association rate (kass) = 580 ± 60 M(-1)·s(-1)]. αM/uPA and products of its degradation contributed to durable intrapleural plasminogen activation up to 24 h after IPFT. Active PAI-1, active α2M, and α2M/uPA found in empyema, pneumonia, and malignant PFs demonstrate the capacity to support similar mechanisms in humans. Intrapleural scuPA processing differs from that in the bloodstream and includes 1) dose-dependent control of scuPA activation by endogenous active PAI-1; 2) two-step inactivation of free uPA with simultaneous formation of αM/uPA; and 3) slow intrapleural degradation of αM/uPA releasing active free uPA. This mechanism offers potential clinically relevant advantages that may enhance the bioavailability of intrapleural scuPA and may mitigate the risk of bleeding complications.

Collaboration


Dive into the Galina Florova's collaboration.

Top Co-Authors

Avatar

Steven Idell

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophia Karandashova

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Kevin A. Reynolds

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Torry A. Tucker

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Kathleen Koenig

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Ali O. Azghani

University of Texas at Tyler

View shared research outputs
Top Co-Authors

Avatar

Sreerama Shetty

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Ali Azghani

University of Texas Health Science Center at Tyler

View shared research outputs
Top Co-Authors

Avatar

Kathy Koenig

University of Texas Health Science Center at Tyler

View shared research outputs
Researchain Logo
Decentralizing Knowledge