Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Galina K. Sukhova is active.

Publication


Featured researches published by Galina K. Sukhova.


Molecular Cell | 1998

Absence of Monocyte Chemoattractant Protein-1 Reduces Atherosclerosis in Low Density Lipoprotein Receptor–Deficient Mice

Long Gu; Yoshikatsu Okada; Steven K. Clinton; Craig Gerard; Galina K. Sukhova; Peter Libby; Barrett J. Rollins

Recruitment of blood monocytes into the arterial subendothelium is one of the earliest steps in atherogenesis. Monocyte chemoattractant protein-1 (MCP-1), a CC chemokine, is one likely signal involved in this process. To test MCP-1s role in atherogenesis, low density lipoprotein (LDL) receptor-deficient mice were made genetically deficient for MCP-1 and fed a high cholesterol diet. Despite having the same amount of total and fractionated serum cholesterol as LDL receptor-deficient mice with wild-type MCP-1 alleles, LDL receptor/MCP-1-deficient mice had 83% less lipid deposition throughout their aortas. Consistent with MCP-1 s monocyte chemoattractant properties, compound-deficient mice also had fewer macrophages in their aortic walls. Thus, MCP-1 plays a unique and crucial role in the initiation of atherosclerosis and may provide a new therapeutic target in this disorder.


Nature | 1998

Reduction of atherosclerosis in mice by inhibition of CD40 signalling

François Mach; Uwe Schönbeck; Galina K. Sukhova; Elizabeth Atkinson; Peter Libby

Increasing amounts of evidence support the involvement of inflammation and immunity in atherogenesis but mediators of communication between the major cell types in atherosclerotic plaques are poorly defined. Cells in human atherosclerotic lesions express the immune mediator CD40 and its ligand CD40L (also known as CD154 or gp39). The interaction of CD40 with CD40L figures prominently in both humoral and cell-mediated immune responses. CD40L-positive T cells accumulate in atheroma, and, by virtue of their early appearance, persistence and localization at sites of lesion growth and complication, activated T cells may coordinate important aspects of atherogenesis. Interruption of CD40L–CD40 signalling by administration of an anti-CD40L antibody limits experimental autoimmune diseases such as collagen-induced arthritis, lupus nephritis, acute or chronic graft-versus-host disease, multiple sclerosis and thyroiditis. Ligation of CD40 on atheroma-associated cells in vitro activates functions related to atherogenesis, including induction of pro-inflammatory cytokines, matrix metalloproteinases,, adhesion molecules and tissue factor,. However, the role of CD40 signalling in atherogenesis in vivo remains unknown. Here we determine whether interruption of CD40 signalling influences atherogenesis in vivo in hyperlipidaemic mice. Treatment with antibody against mouse CD40L limited atherosclerosis in mice lacking the receptor for low-density lipoprotein that had been fed a high-cholesterol diet for 12 weeks. This antibody reduces the size of aortic atherosclerotic lesions by 59% and their lipid content by 79%. Furthermore, atheroma of mice treated with anti-CD40L antibody contained significantly fewer macrophages (64%) and T lymphocytes (70%), and exhibited decreased expression of vascular cell adhesion molecule-1. These data support the involvement of inflammatory pathways in atherosclerosis and indicate a role for CD40 signalling during atherogenesis in hyperlipidaemic mice.


Circulation Research | 1994

Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion.

Zorina S. Galis; Maria Muszynski; Galina K. Sukhova; E Simon-Morrissey; E N Unemori; M W Lark; E Amento; Peter Libby

Vascular matrix remodeling occurs during development, growth, and several pathological conditions that affect blood vessels. We investigated the capacity of human smooth muscle cells (SMCs) to express matrix metalloproteinases (MMPs), enzymes that selectively digest components of the extracellular matrix (ECM), in the basal state or after stimulation with certain cytokines implicated in vascular homeostasis and pathology. Enzymatic activity associated with various proteins secreted in the culture media was detected by gelatin or casein sodium dodecyl sulfate-polyacrylamide gel electrophoresis zymography. Proteins were identified by immunoprecipitation and mRNA by Northern blotting. SMCs constitutively secreted a 72-kD gelatinase and the tissue inhibitors of MMPs (TIMPs) types 1 and 2. SMCs stimulated with interleukin-1 or tumor necrosis factor-alpha synthesized de novo 92-kD gelatinase, interstitial collagenase, and stromelysin. Several lines of evidence suggest that when stimulated by cytokines, SMCs produce activated forms of MMPs. Together, the constitutive and the cytokine-induced enzymes can digest all the major components of the vascular ECM. Moreover, since these mediators augment the production of MMPs without appreciably affecting the synthesis of TIMPs, locally secreted cytokines may tip the regional balance of MMP activity in favor of vascular matrix degradation.


Journal of Clinical Investigation | 1998

Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells.

Galina K. Sukhova; Guo-Ping Shi; Daniel I. Simon; Harold A. Chapman; Peter Libby

Formation of the atherosclerotic intima must involve altered metabolism of the elastin-rich arterial extracellular matrix. Proteases potentially involved in these processes remain unclear. This study examined the expression of the potent elastases cathepsins S and K in human atheroma. Normal arteries contained little or no cathepsin K or S. In contrast, macrophages in atheroma contained abundant immunoreactive cathepsins K and S. Intimal smooth muscle cells (SMC), especially cells appearing to traverse the internal elastic laminae, also contained these enzymes. Extracts of atheromatous tissues had approximately twofold greater elastase-specific activity than extracts of uninvolved arteries, mostly due to cysteine proteases. Cultured human SMC displayed no immunoreactive cathepsins K and S and exhibited little or no elastolytic activity when incubated with insoluble elastin. SMC stimulated with the atheroma-associated cytokines IL-1beta or IFN-gamma secreted active cathepsin S and degraded substantial insoluble elastin (15-20 microg/10(6) cells/24 h). A selective inhibitor of cathepsin S blocked > 80% of this elastolytic activity. The presence of cathepsins K and S at sites of vascular matrix remodeling and the ability of SMC and macrophages to use these enzymes to degrade elastin supports a role for elastolytic cathepsins in vessel wall remodeling and identifies novel therapeutic targets in regulating plaque stability.


Circulation | 1999

Evidence for Increased Collagenolysis by Interstitial Collagenases-1 and -3 in Vulnerable Human Atheromatous Plaques

Galina K. Sukhova; Uwe Schönbeck; Elena Rabkin; Frederick J. Schoen; Poole Ar; Billinghurst Rc; Peter Libby

BACKGROUND Several recent studies attempted to classify plaques as those prone to cause clinical manifestations (vulnerable, atheromatous plaques) or those less frequently associated with acute thrombotic complication (stable, fibrous plaques). Defining the cellular and molecular mechanisms that underlie these morphological features remains a challenge. Because interstitial forms of collagen determine the biomechanical strength of the atherosclerotic lesion, this study investigated expression of the collagen-degrading matrix metalloproteinase (MMP) interstitial collagenase-3 (MMP-13) and the previously studied MMP-1 in human atheroma and used a novel technique to test the hypothesis that collagenolysis in atheromatous lesions exceeds that in fibrous human atherosclerotic lesions. METHODS AND RESULTS Human carotid atherosclerotic plaques, similar in size, were separated by conventional morphological characteristics into fibrous (n=10) and atheromatous (n=10) lesions. Immunohistochemical and Western blot analysis demonstrated increased levels of MMP-1 and MMP-13 in atheromatous versus fibrous plaques. In addition, collagenase-cleaved type I collagen, demonstrated by a novel cleavage-specific antibody, colocalized with MMP-1- and MMP-13-positive macrophages. Macrophages, rather than endothelial or smooth muscle cells, expressed MMP-13 and MMP-1 on stimulation in vitro. Furthermore, Western blot analysis demonstrated loss of interstitial collagen type I and increased collagenolysis in atheromatous versus fibrous lesions. Finally, atheromatous plaques contained higher levels of proinflammatory cytokines, activators of MMPs. CONCLUSIONS This report demonstrates that atheromatous rather than fibrous plaques might be prone to rupture due to increased collagenolysis associated with macrophages, probably mediated by the interstitial collagenases MMP-1 and MMP-13.


Circulation | 1999

PPARα Activators Inhibit Cytokine-Induced Vascular Cell Adhesion Molecule-1 Expression in Human Endothelial Cells

Nikolaus Marx; Galina K. Sukhova; Tucker Collins; Peter Libby; Jorge Plutzky

Background—Adhesion molecule expression on the endothelial cell (EC) surface is critical for leukocyte recruitment to atherosclerotic lesions. Better understanding of transcriptional regulation of adhesion molecules in ECs may provide important insight into plaque formation. Peroxisome proliferator–activated receptor-α (PPARα), a member of the nuclear receptor family, regulates gene expression in response to certain fatty acids and fibric acid derivatives. The present study investigated PPARα expression in human ECs and their regulation of vascular cell adhesion molecule-1 (VCAM-1). Methods and Results—Immunohistochemistry revealed that human carotid artery ECs express PPARα. Pretreatment of cultured human ECs with the PPARα activators fenofibrate or WY14643 inhibited TNF-α–induced VCAM-1 in a time- and concentration-dependent manner, an effect not seen with PPARγ activators. Both PPARα activators decreased cytokine-induced VCAM-1 mRNA expression without altering its mRNA half-life. Transient transfection...


American Journal of Pathology | 2001

Macrophage Myeloperoxidase Regulation by Granulocyte Macrophage Colony-Stimulating Factor in Human Atherosclerosis and Implications in Acute Coronary Syndromes

Seigo Sugiyama; Yoshikatsu Okada; Galina K. Sukhova; Renu Virmani; Jay W. Heinecke; Peter Libby

Inflammation and oxidative stress contribute to the pathogenesis of many human diseases including atherosclerosis. Advanced human atheroma contains high levels of the enzyme myeloperoxidase that produces the pro-oxidant species, hypochlorous acid (HOCl). This study documents increased numbers of myeloperoxidase-expressing macrophages in eroded or ruptured plaques causing acute coronary syndromes. In contrast, macrophages in human fatty streaks contain little or no myeloperoxidase. Granulocyte macrophage colony-stimulating factor, but not macrophage colony-stimulating factor, selectively regulates the ability of macrophages to express myeloperoxidase and produce HOCl in vitro. Moreover, myeloperoxidase-positive macrophages in plaques co-localized with granulocyte macrophage colony-stimulating factor. Pro-inflammatory stimuli known to be present in human atherosclerotic plaque, including CD40 ligand, lysophosphatidylcholine, or cholesterol crystals, could induce release of myeloperoxidase from HOCl production by macrophages in vitro. HOCl-modified proteins accumulated at ruptured or eroded sites of human coronary atheroma. These results identify granulocyte macrophage colony-stimulating factor as an endogenous regulator of macrophage myeloperoxidase expression in human atherosclerosis and support a particular role for the myeloperoxidase-expressing macrophages in atheroma complication and the acute coronary syndromes.


Circulation | 1998

Lipid Lowering by Diet Reduces Matrix Metalloproteinase Activity and Increases Collagen Content of Rabbit Atheroma A Potential Mechanism of Lesion Stabilization

Masanori Aikawa; Elena Rabkin; Yoshikatsu Okada; Sami J. Voglic; Steven K. Clinton; Constance E. Brinckerhoff; Galina K. Sukhova; Peter Libby

BACKGROUND Proteolytic enzyme activity in lipid-rich atheroma may promote plaque rupture and precipitate acute coronary syndromes. This study tested the hypothesis that lipid lowering stabilizes plaques by reducing proteolytic activity. METHODS AND RESULTS We produced experimental atheroma in 33 rabbits by balloon injury and an atherogenic diet (0.3% cholesterol and 4.7% coconut oil) for 4 months. At that time, 15 rabbits were killed (baseline group). The remaining animals were divided into two groups: a hyperlipemic group continued to consume a cholesterol-enriched diet (0.05% to 0.2%) for 16 more months (n=5) and a lipid-lowering group consumed a purified chow diet with no added cholesterol or fat for 8 (n=3) or 16 months (n=10). Macrophage accumulation and interstitial collagenase (matrix metalloproteinase-1, MMP-1) expression in the lesion were measured by quantitative image analysis of standardized sections of immunostained aortas. Baseline lesions expressed high levels of MMP-1 and contained many macrophages. These features of plaque instability persisted in the hyperlipemic group. However, the lipid-lowering group showed progressive reduction in both macrophage content and MMP- 1 immunoreactivity with time. Aortic rings of the baseline and hyperlipemic groups elaborated gelatinolytic, caseinolytic, and elastinolytic activity attributable to MMP-2, MMP-3, or MMP-9, monitored by SDS-PAGE zymography. Proteolytic activity decreased markedly in the lipid-lowering group. Aortic content of interstitial collagen, determined by sirius red staining, increased in the lipid-lowering group compared with the baseline or continued hyperlipemic groups, indicating that lipid lowering reinforced the fibrous skeleton of the atheroma. CONCLUSIONS These results establish a mechanism by which lipid lowering may stabilize vulnerable plaques by reduced expression and activity of enzymes that degrade the arterial extracellular matrix and render atheroma less susceptible to disruption and thrombosis by favoring collagen accumulation in the fibrous cap.


American Journal of Pathology | 1998

Macrophages in Human Atheroma Contain PPARγ: Differentiation-Dependent Peroxisomal Proliferator-Activated Receptor γ (PPARγ) Expression and Reduction of MMP-9 Activity through PPARγ Activation in Mononuclear Phagocytes in Vitro

Nikolaus Marx; Galina K. Sukhova; Curran Murphy; Peter Libby; Jorge Plutzky

Mononuclear phagocytes play an important role in atherosclerosis and its sequela plaque rupture in part by their secretion of matrix metalloproteinases (MMPs), including MMP-9. Peroxisomal proliferator-activated receptor γ (PPARγ), a transcription factor in the nuclear receptor superfamily, regulates gene expression in response to various activators, including 15-deoxy-Δ 12,14 -prostaglandin J 2 and the antidiabetic agent troglitazone. The role of PPARγ in human atherosclerosis is unexplored. We report here that monocytes/macrophages in human atherosclerotic lesions ( n = 12) express immunostainable PPARγ. Normal artery specimens ( n = 6) reveal minimal immunoreactive PPARγ. Human monocytes and monocyte-derived macrophages cultured for 6 days in 5% human serum expressed PPARγ mRNA and protein by reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, PPARγ mRNA expression in U937 cells increased during phorbol 12-myristate 13 acetate-induced differentiation. Stimulation of PPARγ with troglitazone or 15-deoxy-Δ 12,14 -prostaglandin J 2 in human monocyte-derived macrophages inhibited MMP-9 gelatinolytic activity in a concentration-dependent fashion as revealed by zymography. This inhibition correlates with decreased MMP-9 secretion as determined by Western blotting. Thus, PPARγ is present in macrophages in human atherosclerotic lesions and may regulate expression and activity of MMP-9, an enzyme implicated in plaque rupture. PPARγ is likely to be an important regulator of monocyte/macrophage function with relevance for human atherosclerotic disease.


Circulation | 1998

Chlamydial Heat Shock Protein 60 Localizes in Human Atheroma and Regulates Macrophage Tumor Necrosis Factor-α and Matrix Metalloproteinase Expression

Amir Kol; Galina K. Sukhova; Andrew H. Lichtman; Peter Libby

BACKGROUND Recent evidence has implicated Chlamydia pneumoniae in the aggravation of atherosclerosis. However, the mechanisms by which this agent affects atherogenesis remain poorly understood. Chlamydiae produce large amounts of heat shock protein 60 (HSP 60) during chronic, persistent infections, and C pneumoniae localizes predominantly within plaque macrophages. Several studies have furnished evidence that endogenous (human) HSP 60 may play a role in atherogenesis. We tested here the hypothesis that atheroma contains chlamydial HSP 60 and that this bacterial product might stimulate macrophage functions considered relevant to atherosclerosis and its complications, such as production of proinflammatory cytokines as tissue necrosis factor-alpha (TNF-alpha) and matrix-degrading metalloproteinases (MMPs). METHODS AND RESULTS Surgical specimens of human carotid atherosclerotic arteries (n = 19) and normal arterial wall samples (n=7, 2 carotid arteries and 5 aortas) were tested immunohistochemically for the presence of chlamydial HSP 60 and human HSP 60. Macrophage localization of these antigens was assessed by double immunostaining. Murine peritoneal macrophages, maintained in serum-free conditions for 48 hours after harvesting, were incubated with C pneumoniae, chlamydial HSP 60, human HSP 60, or Escherichia coli lipopolysaccharide (LPS). Culture supernatants, collected at 24 hours for concentration-dependence experiments and at up to 72 hours for time-dependence experiments, were analyzed for TNF-alpha by ELISA and for MMP by gelatin zymography. Atherosclerotic lesions showed immunoreactive chlamydial HSP 60 in 47% (9 of 19) of the cases and human HSP 60 in 89% (17 of 19) of the cases. Chlamydial HSP 60 colocalized with human HSP 60 within plaque macrophages in 77% (7 of 9) of the cases. Nonatherosclerotic samples contained neither HSP. Both C pneumoniae and recombinant chlamydial HSP 60 induced TNF-alpha production by mouse macrophages in a concentration- and time-dependent fashion. E coli LPS and human HSP 60 produced similar effects. Similarly, C pneumoniae and HSPs induced MMPs in a concentration- and time-dependent manner. Heat treatment abolished the effect of C pneumoniae and HSPs on both TNF-alpha and MMP production, but it did not alter the ability of E coli LPS to induce these functions. CONCLUSIONS Chlamydial HSP 60 frequently colocalizes with human HSP 60 in plaque macrophages in human atherosclerotic lesions. Chlamydial and human HSP 60 induce TNF-alpha and MMP production by macrophages. Chlamydial HSP 60 might mediate the induction of these effects by C pneumoniae. Induction of such macrophage functions provides potential mechanisms by which chlamydial infections may promote atherogenesis and precipitate acute ischemic events.

Collaboration


Dive into the Galina K. Sukhova's collaboration.

Top Co-Authors

Avatar

Peter Libby

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Guo-Ping Shi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Eugenia Shvartz

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Uwe Schönbeck

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yevgenia Tesmenitsky

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Eduardo J. Folco

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kevin Croce

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Cong-Lin Liu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

François Mach

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge