Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ganesh M. Kishore is active.

Publication


Featured researches published by Ganesh M. Kishore.


Science | 1992

Regulation of the Amount of Starch in Plant Tissues by ADP Glucose Pyrophosphorylase

David M. Stark; Kurt P. Timmerman; Gerard Francis Barry; Jack Preiss; Ganesh M. Kishore

Starch, a major storage metabolite in plants, positively affects the agricultural yield of a number of crops. Its biosynthetic reactions use adenosine diphosphate glucose (ADPGlc) as a substrate; ADPGlc pyrophosphorylase, the enzyme involved in ADPGlc formation, is regulated by allosteric effectors. Evidence that this plastidial enzyme catalyzes a rate-limiting reaction in starch biosynthesis was derived by expression in plants of a gene that encodes a regulatory variant of this enzyme. Allosteric regulation was demonstrated to be the major physiological mechanism that controls starch biosynthesis. Thus, plant and bacterial systems for starch and glycogen biosynthesis are similar and distinct from yeast and mammalian systems, wherein glycogen synthase has been demonstrated to be the rate-limiting regulatory step.


Science | 1986

Engineering Herbicide Tolerance in Transgenic Plants

Dilip M. Shah; Robert B. Horsch; Harry J. Klee; Ganesh M. Kishore; Jill A. Winter; Nilgun E. Tumer; Cathy M. Hironaka; Patricia R. Sanders; Charles S. Gasser; Serdar Aykent; Ned R. Siegel; Stephen G. Rogers; Robert T. Fraley

The herbicide glyphosate is a potent inhibitor of the enzyme 5-enolpyruvylshikimate- 3-phosphate (EPSP) synthase in higher plants. A complementary DNA (cDNA) clone encoding EPSP synthase was isolated from a complementary DNA library of a glyphosate-tolerant Petunia hybrida cell line (MP4-G) that overproduces the enzyme. This cell line was shown to overproduce EPSP synthase messenger RNA as a result of a 20-fold amplification of the gene. A chimeric EPSP synthase gene was constructed with the use of the cauliflower mosaic virus 35S promoter to attain high level expression of EPSP synthase and introduced into petunia cells. Transformed petunia cells as well as regenerated transgenic plants were tolerant to glyphosate.


The Plant Cell | 1991

Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants.

Harry J. Klee; Maria B. Hayford; Keith A. Kretzmer; Gerard Francis Barry; Ganesh M. Kishore

Synthesis of the phytohormone ethylene is believed to be essential for many plant developmental processes. The control of ripening in climacteric fruits and vegetables is among the best characterized of these processes. One approach to reduce ethylene synthesis in plants is metabolism of its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). Soil bacteria containing an enzyme, ACC deaminase, were identified by their ability to grow on ACC as a sole nitrogen source. The gene encoding ACC deaminase was cloned and introduced into tomato plants. Reduction in ethylene synthesis in transgenic plants did not cause any apparent vegetative phenotypic abnormalities. However, fruits from these plants exhibited significant delays in ripening, and the mature fruits remained firm for at least 6 weeks longer than the nontransgenic control fruit. These results indicated that ACC deaminase is useful for examining the role of ethylene in many developmental and stress-related processes in plants as well as for extending the shelf life of fruits and vegetables whose ripening is mediated by ethylene.


Nature Biotechnology | 1999

Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production

Steven C. Slater; Timothy A. Mitsky; Kathryn L. Houmiel; Ming Hao; Steven E. Reiser; Nancy Taylor; Minhtien Tran; Henry E. Valentin; Damian J. Rodriguez; Deborah A. Stone; Stephen R. Padgette; Ganesh M. Kishore; Kenneth J. Gruys

Poly(hydroxyalkanoates) are natural polymers with thermoplastic properties. One polymer of this class with commercial applicability, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) can be produced by bacterial fermentation, but the process is not economically competitive with polymer production from petrochemicals. Poly(hydroxyalkanoate) production in green plants promises much lower costs, but producing copolymer with the appropriate monomer composition is problematic. In this study, we have engineered Arabidopsis and Brassica to produce PHBV in leaves and seeds, respectively, by redirecting the metabolic flow of intermediates from fatty acid and amino acid biosynthesis. We present a pathway for the biosynthesis of PHBV in plant plastids, and also report copolymer production, metabolic intermediate analyses, and pathway dynamics.


Current Opinion in Biotechnology | 2000

Exploiting the full potential of disease-resistance genes for agricultural use

Caius M. T. Rommens; Ganesh M. Kishore

Effective and sustained control of fungal pathogens and nematodes is an important issue for all agricultural systems. Global losses caused by pathogens are estimated to be 12% of the potential crop production [1], despite the continued release of new resistant cultivars and pesticides. Furthermore, fungi are continually becoming resistant to existing resistance genes and fungicides, and a few of the pesticides are being withdrawn from the market for environmental reasons. In addition to reducing crop yield, fungal diseases often lower crop quality by producing toxins that affect humans and human health. Additional methods of disease control are therefore highly desirable. Breeding programs based on plant disease-resistance genes are being optimized by incorporating molecular marker techniques and biotechnology. These efforts can be expected to result in the first launches of new disease-resistant crops within the next five years.


The EMBO Journal | 1988

Import of a precursor protein into chloroplasts is inhibited by the herbicide glyphosate

Guy della-Cioppa; Ganesh M. Kishore

Import of the precursor to 5‐enolpyruvylshikimate‐3‐phosphate synthase (pEPSPS) into chloroplasts is inhibited by the herbicide glyphosate. Inhibition of import is maximal at glyphosate concentrations of ≥10 μm and occurs only when pEPSPS is present as a ternary complex of enzyme–shikimate‐3‐phosphate–glyphosate. Glyphosate alone had no effect on the import of pEPSPS since it is not known to interact with the enzyme in the absence of shikimate‐3‐phosphate. Experiments with wild‐type and glyphosate‐resistant mutant forms of pEPSPS show that inhibition of import is directly proportional to the binding constants for glyphosate. Inhibition of import is thus a direct consequence of glyphosate binding to the enzyme–shikimate‐3‐phosphate complex. The potential for non‐specific effects of glyphosate on the chloroplast transport mechanism has been discounted by showing that import of another chloroplast‐designated protein was unaffected by high concentrations of glyphosate and shikimate‐3‐phosphate. The mechanism of import inhibition by glyphosate is consistent with a precursor unfolding/refolding model.


Archives of Biochemistry and Biophysics | 1987

Bacterial expression and isolation of Petunia hybrida 5-enol-Pyruvylshikimate-3-phosphate synthase

Stephen R. Padgette; Q.Khai Huynh; Jeffry R. Borgmeyer; Dilip M. Shah; Leslie Brand; Diane Biest Re; Bruce F. Bishop; Stephen G. Rogers; Robert T. Fraley; Ganesh M. Kishore

5-enol-Pyruvylshikimate-3-phosphate synthase (EPSP synthase, EPSPS), an in vivo enzyme target of the herbicide glyphosate (N-phosphonomethyl glycine), was purified from a Petunia hybrida suspension culture line, MP4-G, by a small-scale high-performance chromatographic purification procedure. The cDNA encoding the mature petunia EPSPS (lacking the chloroplast transit sequence) was cloned into a plasmid, pMON342, for expression in Escherichia coli. This clone complemented the EPSPS deficiency of an E. coli aroA- mutant, and the plant enzyme constituted approximately 1% of the total extractable protein. Large-scale purification of the enzyme from E. coli cells resulted in a highly active protein which was homogeneous as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino terminal sequencing. Antibodies raised against the purified enzyme also reacted with the E. coli EPSPS in Western analyses. The availability of large quantities of the plant enzyme will significantly facilitate mechanistic investigations as well as a comparative study with EPSPS from bacteria and fungi.


Molecular Genetics and Genomics | 1988

Expression of glyphosate resistance in carrot somatic hybrid cells through the transfer of an amplified 5-enolpyruvylshikimic acid-3-phosphate synthase gene

R. M. Hauptmann; G. della-Cioppa; Alan G. Smith; Ganesh M. Kishore; Jack M. Widholm

SummaryA Daucus carota cell line selected as resistant to N-(phosphonomethyl)-glycine (glyphosate) was found to have increased levels of 5-enolpyruvylshikimic acid-3-phosphate synthase (EPSPS) activity of 5.5 times over wild-type carrot and an EPSPS protein level increase of 8.7 times as confirmed by Western hybridization analysis. Southern blot hybridization using a petunia EPSPS probe showed increases in the number of copies of EPSPS genes in the glyphosate-resistant line which correlated with the higher levels of the EPSPS enzyme. The mechanism of resistance to glyphosate is therefore due to amplification of the EPSPS gene. To examine the stability of the amplified genes, cloned lines selected as doubly resistant to Dl-5-methyltryptophan (5MT) and azetidine-2-carboxylate (A2C) were fused with the amplified EPSPS glyphosate-resistant cell line. Somatic hybrids expressed resistances to 5MT in a semidominant fashion while A2C and glyphosate resistance was expressed as dominant, or semi-dominant traits, in a line-specific manner. The hybrid lines possessed additive chromosome numbers of the parental lines used and no double minute chromosomes were observed. The glyphosate-resistant parental line and most somatic hybrids retained the amplified levels of EPSPS in the absence of selection pressure over a 3-year period.


Current Opinion in Biotechnology | 1993

Genetic engineering of commercially useful biosynthetic pathways in transgenic plants

Ganesh M. Kishore; Chris Somerville

In many economically important plant species, the chemical composition of one or more non-protein compounds determines the value of the plant and may have an important role in protecting the plant from environmental stress, including pests, drought, salt, temperature and light. A number of potential opportunities exist whereby the range or amount of such valuable compounds can be increased by genetic engineering.


Phytochemistry | 2003

Expression of a Streptomyces 3-hydroxysteroid oxidase gene in oilseeds for converting phytosterols to phytostanols

Mylavarapu Venkatramesh; Balasulojini Karunanandaa; Bin Sun; Catharine A Gunter; Sekhar S. Boddupalli; Ganesh M. Kishore

Plant sterols and their hydrogenated forms, stanols, have attracted much attention because of their benefits to human health in reducing serum and LDL cholesterol levels, with vegetable oil processing being their major source in several food products currently sold. The predominant forms of plant sterol end products are sitosterol, stigmasterol, campesterol and brassicasterol (in brassica). In this study, 3-hydroxysteroid oxidase from Streptomyces hygroscopicus was utilized to engineer oilseeds from rapeseed (Brassica napus) and soybean (Glycine max), respectively, to modify the relative amounts of specific sterols to stanols. Each of the major phytosterols had its C-5 double bond selectively reduced to the corresponding phytostanol without affecting other functionalities, such as the C-22 double bond of stigmasterol in soybean seed and of brassicasterol in rapeseed. Additionally, several novel phytostanols were obtained that are not produced by chemical hydrogenation of phytosterols normally present in plants.

Collaboration


Dive into the Ganesh M. Kishore's collaboration.

Researchain Logo
Decentralizing Knowledge