Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ganesh V. Halade is active.

Publication


Featured researches published by Ganesh V. Halade.


Circulation Research | 2013

Matrix Metalloproteinase-28 Deletion Exacerbates Cardiac Dysfunction and Rupture After Myocardial Infarction in Mice by Inhibiting M2 Macrophage Activation

Yonggang Ma; Ganesh V. Halade; Jianhua Zhang; Trevi A. Ramirez; Daniel L. Levin; Andrew Voorhees; Yu Fang Jin; Hai Chao Han; Anne M. Manicone; Merry L. Lindsey

Rationale: Matrix metalloproteinase (MMP)-28 regulates the inflammatory and extracellular matrix responses in cardiac aging, but the roles of MMP-28 after myocardial infarction (MI) have not been explored. Objective: To determine the impact of MMP-28 deletion on post-MI remodeling of the left ventricle (LV). Methods and Results: Adult C57BL/6J wild-type (n=76) and MMP null (MMP-28−/−, n=86) mice of both sexes were subjected to permanent coronary artery ligation to create MI. MMP-28 expression decreased post-MI, and its cell source shifted from myocytes to macrophages. MMP-28 deletion increased day 7 mortality because of increased cardiac rupture post-MI. MMP-28−/− mice exhibited larger LV volumes, worse LV dysfunction, a worse LV remodeling index, and increased lung edema. Plasma MMP-9 levels were unchanged in the MMP-28−/− mice but increased in wild-type mice at day 7 post-MI. The mRNA levels of inflammatory and extracellular matrix proteins were attenuated in the infarct regions of MMP-28−/− mice, indicating reduced inflammatory and extracellular matrix responses. M2 macrophage activation was impaired when MMP-28 was absent. MMP-28 deletion also led to decreased collagen deposition and fewer myofibroblasts. Collagen cross-linking was impaired as a result of decreased expression and activation of lysyl oxidase in the infarcts of MMP-28−/− mice. The LV tensile strength at day 3 post-MI, however, was similar between the 2 genotypes. Conclusions: MMP-28 deletion aggravated MI-induced LV dysfunction and rupture as a result of defective inflammatory response and scar formation by suppressing M2 macrophage activation.


Journal of Nutritional Biochemistry | 2010

High fat diet-induced animal model of age-associated obesity and osteoporosis.

Ganesh V. Halade; Md. Mizanur Rahman; Paul J. Williams; Gabriel Fernandes

Osteoporosis and obesity remain a major public health concern through its associated fragility and fractures. Several animal models for the study of osteoporotic bone loss, such as ovariectomy (OVX) and denervation, require unique surgical skills and expensive set up. The challenging aspect of these age-associated diseases is that no single animal model exactly mimics the progression of these human-specific chronic conditions. Accordingly, to develop a simple and novel model of post menopausal bone loss with obesity, we fed either a high fat diet containing 10% corn oil (CO) or standard rodent lab chow (LC) to 12-month-old female C57Bl/6J mice for 6 months. As a result, CO fed mice exhibited increased body weight, total body fat mass, abdominal fat mass and reduced bone mineral density (BMD) in different skeletal sites measured by dual energy X-ray absorptiometry. We also observed that decreased BMD with age in CO fed obese mice was accompanied by increased bone marrow adiposity, up-regulation of peroxisome proliferator-activated receptor γ, cathepsin k and increased proinflammatory cytokines (interleukin 6 and tumor necrosis factor α) in bone marrow and splenocytes, when compared to that of LC fed mice. Therefore, this appears to be a simple, novel and convenient age-associated model of post menopausal bone loss, in conjunction with obesity, which can be used in pre-clinical drug discovery to screen new therapeutic drugs or dietary interventions for the treatment of obesity and osteoporosis in the human population.


Pharmacology & Therapeutics | 2013

Matrix Metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation

Ganesh V. Halade; Yu Fang Jin; Merry L. Lindsey

Adverse cardiac remodeling following myocardial infarction (MI) remains a significant cause of congestive heart failure. Additional and novel strategies that improve our ability to predict, diagnose, or treat remodeling are needed. Numerous groups have explored single and multiple biomarker strategies to identify diagnostic prognosticators of remodeling progression, which will improve our ability to promptly and accurately identify high-risk individuals. The identification of better clinical indicators should further lead to more effective prediction and timely treatment. Matrix metalloproteinase (MMP-9) is one potential biomarker for cardiac remodeling, as demonstrated by both animal models and clinical studies. In animal MI models, MMP-9 expression significantly increases and is linked with inflammation, diabetic microvascular complications, extracellular matrix degradation and synthesis, and cardiac dysfunction. Clinical studies have also established a relationship between MMP-9 and post-MI remodeling and mortality, making MMP-9 a viable candidate to add to the multiple biomarker list. By definition, a proximal biomarker shows a close relationship with its target disease, whereas a distal biomarker exhibits non-targeted disease modifying outcomes. In this review, we explore the ability of MMP-9 to serve as a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. We summarize the current molecular basis and clinical platform that allow us to include MMP-9 as a biomarker in both categories.


Experimental Gerontology | 2011

Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice.

Ganesh V. Halade; Amina El Jamali; Paul J. Williams; Roberto J. Fajardo; Gabriel Fernandes

Clinical evidence indicates that fat is inversely proportional to bone mass in elderly obese women. However, it remains unclear whether obesity accelerates bone loss. In this report we present evidence that increased visceral fat leads to inflammation and subsequent bone loss in 12-month-old C57BL/6J mice that were fed 10% corn oil (CO)-based diet and a control lab chow (LC) for 6 months. As expected from our previous work, CO-fed mice demonstrated increased visceral fat and enhanced total body fat mass compared to LC. The adipocyte-specific PPARγ and bone marrow (BM) adiposity were increased in CO-fed mice. In correlation with those modifications, inflammatory cytokines (IL-1β, IL-6, TNF-α) were significantly elevated in CO-fed mice compared to LC-fed mice. This inflammatory BM microenvironment resulted in increased superoxide production in osteoclasts and undifferentiated BM cells. In CO-fed mice, the increased number of osteoclasts per trabecular bone length and the increased osteoclastogenesis assessed ex-vivo suggest that CO diet induces bone resorption. Additionally, the up-regulation of osteoclast-specific cathepsin k and RANKL expression and down-regulation of osteoblast-specific RUNX2/Cbfa1 supports this bone resorption in CO-fed mice. Also, CO-fed mice exhibited lower trabecular bone volume in the distal femoral metaphysis and had reduced OPG expression. Collectively, our results suggest that increased bone resorption in mice fed a CO-enriched diet is possibly due to increased inflammation mediated by the accumulation of adipocytes in the BM microenvironment. This inflammation may consequently increase osteoclastogenesis, while reducing osteoblast development in CO-fed mice.


Journal of Molecular and Cellular Cardiology | 2015

Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function

Vasundhara Kain; Kevin A. Ingle; Romain A. Colas; Jesmond Dalli; Sumanth D. Prabhu; Charles N. Serhan; Medha Joshi; Ganesh V. Halade

Unresolved inflammation is a major contributor to the development of heart failure following myocardial infarction (MI). Pro-resolving lipid mediators, such as resolvins (e.g. RvD1), are biosynthesized endogenously. The role of RvD1 in resolving post-MI inflammation has not been elucidated due to its unstable nature. Here, we have tested the role for two forms of RvD1, after incorporation into liposomes (Lipo-RvD1) and its free acid form (RvD1) in the left ventricle (LV) and splenic remodeling post-MI. 8 to 12-week old male, C57BL/6J-mice were subjected to coronary artery ligation and Lipo-RvD1 or RvD1 (3 μg/kg/day) was injected 3h post-MI for day (d)1 or until d5. No-MI mice and saline-injected MI mice served as controls. RvD1 injected groups showed improved fractional shortening post-MI; preserving transient changes in the splenic reservoir compared to MI-saline. RvD1-groups showed an early exit of neutrophils from LV and spleen at d5 post-MI with an increased expression of lipoxin A4 receptor (ALX; synonym formyl peptide receptor; FPR2) compared to the MI-saline group. The levels of pro-resolving mediators RvD1, RvD2, Maresin 1 (MaR1) and Lipoxin A4 (LXA4) were increased in spleens from RvD1 injected mice at d5 post-MI. RvD1 administration reduced macrophage density, ccr5 and cxcl5 levels at d5 post-MI compared to saline injected mice (both, p < 0.05). Increased transcripts of mrc-1, arg-1 and Ym-1 (all, p < 0.05) suggest macrophage-mediated clearance of necrotic cells in RvD1-groups. RvD1 reduced the pro-fibrotic genes (colla1, coll2a1 and tnc (all; p < 0.05)) and decreased collagen deposition, thereby reducing post-MI fibrosis and thus stabilizing the extracellular matrix. In summary, RvD1 and Lipo-RvD1 promote the resolution of acute inflammation initiated by MI, thereby delaying the onset of heart failure.


Journal of Immunology | 2010

Docosahexaenoic Acid-Enriched Fish Oil Attenuates Kidney Disease and Prolongs Median and Maximal Life Span of Autoimmune Lupus-Prone Mice

Ganesh V. Halade; Md. Mizanur Rahman; Arunabh Bhattacharya; Jeffrey L. Barnes; Bysani Chandrasekar; Gabriel Fernandes

The therapeutic efficacy of individual components of fish oils (FOs) in various human inflammatory diseases still remains unresolved, possibly due to low levels of n-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) or lower ratio of DHA to EPA. Because FO enriched with DHA (FO-DHA) or EPA (FO-EPA) has become available recently, we investigated their efficacy on survival and inflammatory kidney disease in a well-established animal model of human systemic lupus erythematosus. Results show for the first time that FO-DHA dramatically extends both the median (658 d) and maximal (848 d) life span of (NZB × NZW)F1 (B × W) mice. In contrast, FO-EPA fed mice had a median and maximal life span of ∼384 and 500 d, respectively. Investigations into possible survival mechanisms revealed that FO-DHA (versus FO-EPA) lowers serum anti-dsDNA Abs, IgG deposition in kidneys, and proteinuria. Further, FO-DHA lowered LPS-mediated increases in serum IL-18 levels and caspase-1–dependent cleavage of pro–IL-18 to mature IL-18 in kidneys. Moreover, FO-DHA suppressed LPS-mediated PI3K, Akt, and NF-κB activations in kidney. These data indicate that DHA, but not EPA, is the most potent n-3 fatty acid that suppresses glomerulonephritis and extends life span of systemic lupus erythematosus-prone short-lived B × W mice, possibly via inhibition of IL-18 induction and IL-18–dependent signaling.


Basic Research in Cardiology | 2014

Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction

Vasundhara Kain; Sumanth D. Prabhu; Ganesh V. Halade

Myocardial infarction (MI) is the main cause for the progression of the left ventricle towards congestive heart failure. The optimal healing after MI requires timely induction and resolution of inflammation. Primarily, there have been a number of strategies applied to inhibit the post-MI inflammation but approaches that focus on the resolution of inflammation have sparsely been used in the treatment of heart failure. The early attempts to inhibit post-MI inflammation resulted in adverse outcomes that were realized in heart failure trials. We provide here an overview on the cyclooxygenase (COX)- and lipoxygenase (LOX)-derived lipid mediators that are either impairing or resolving the post-MI inflammation. With the evolution of lipidomics there has been emerging novel bioactive-specialized lipid mediators that promise to resolve chronic inflammation rather than promoting inhibition. The current review is focused on post-MI immune cells kinetics and the unexplored array of lipid mediators that are coordinated by COX and LOX. Thus, an emphasis on COX and LOX poses key questions and potential for the development of novel targets in the heart failure treatment strategy. This updated dynamic approach aims to fuse basic pre-clinical discoveries and translational bioactive lipid-based resolvin discoveries that could be potentially used in the clinic for the treatment of heart failure.


Journal of Molecular and Cellular Cardiology | 2012

Transgenic overexpression of matrix metalloproteinase-9 in macrophages attenuates the inflammatory response and improves left ventricular function post-myocardial infarction.

Rogelio Zamilpa; Jessica Ibarra; Lisandra E. de Castro Brás; Trevi A. Ramirez; Nguyen Nguyen; Ganesh V. Halade; Jianhua Zhang; Qiuxia Dai; Tariq Dayah; Ying Ann Chiao; Wesley Lowell; Seema S. Ahuja; Jeanine D'Armiento; Yu Fang Jin; Merry L. Lindsey

Following myocardial infarction (MI), activated macrophages infiltrate into the necrotic myocardium as part of a robust pro-inflammatory response and secrete matrix metalloproteinase-9 (MMP-9). Macrophage activation, in turn, modulates the fibrotic response, in part by stimulating fibroblast extracellular matrix (ECM) synthesis. We hypothesized that overexpression of human MMP-9 in mouse macrophages would amplify the inflammatory and fibrotic responses to exacerbate left ventricular dysfunction. Unexpectedly, at day 5 post-MI, ejection fraction was improved in transgenic (TG) mice (25±2%) compared to the wild type (WT) mice (18±2%; p<0.05). By gene expression profiling, 23 of 84 inflammatory genes were decreased in the left ventricle infarct (LVI) region from the TG compared to WT mice (all p<0.05). Concomitantly, TG macrophages isolated from the LVI, as well as TG peritoneal macrophages stimulated with LPS, showed decreased inflammatory marker expression compared to WT macrophages. In agreement with attenuated inflammation, only 7 of 84 cell adhesion and ECM genes were increased in the TG LVI compared to WT LVI, while 43 genes were decreased (all p<0.05). These results reveal a novel role for macrophage-derived MMP-9 in blunting the inflammatory response and limiting ECM synthesis to improve left ventricular function post-MI.


Journal of Cardiovascular Translational Research | 2012

Extracellular Matrix and Fibroblast Communication Following Myocardial Infarction

Yonggang Ma; Ganesh V. Halade; Merry L. Lindsey

The extracellular matrix (ECM) provides structural support by serving as a scaffold for cells, and as such the ECM maintains normal tissue homeostasis and mediates the repair response following injury. In response to myocardial infarction (MI), ECM expression is generally upregulated in the left ventricle (LV), which regulates LV remodeling by modulating scar formation. The ECM directly affects scar formation by regulating growth factor release and cell adhesion and indirectly affects scar formation by regulating the inflammatory, angiogenic, and fibroblast responses. This review summarizes the current literature on ECM expression patterns and fibroblast mechanisms in the myocardium, focusing on the ECM response to MI. In addition, we discuss future research areas that are needed to better understand the molecular mechanisms of ECM action, both in general and as a means to optimize infarct healing.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Obesity superimposed on aging magnifies inflammation and delays the resolving response after myocardial infarction

Elizabeth Lopez; Janusz H. Kabarowski; Kevin A. Ingle; Vasundhara Kain; Stephen Barnes; David K. Crossman; Merry L. Lindsey; Ganesh V. Halade

Polyunsaturated fatty acid (PUFA) intake has increased over the last 100 yr, contributing to the current obesogenic environment. Obesity and aging are prominent risk factors for myocardial infarction (MI). How obesity interacts with aging to alter the post-MI response, however, is unclear. We tested the hypothesis that obesity in aging mice would impair the resolution of post-MI inflammation. PUFA diet (PUFA aging group) feeding to 12-mo-old C57BL/6J mice for 5 mo showed higher fat mass compared with standard lab chow (LC)-fed young (LC young group; 3-5 mo old) or aging alone control mice (LC aging group). LC young, LC aging, and PUFA aging mice were subjected to coronary artery ligation to induce MI. Despite similar infarct areas post-MI, plasma proteomic profiling revealed higher VCAM-1 in the PUFA aging group compared with LC young and LC aging groups, leading to increased neutrophil infiltration in the PUFA aging group (P<0.05). Macrophage inflammatory protein-1γ and CD40 were also increased at day 1, and myeloperoxidase remained elevated at day 5, an observation consistent with delayed wound healing in the PUFA aging group. Lipidomic analysis showed higher levels of arachidonic acid and 12(S)-hydroxyeicosatetraenoic acid at day 1 post-MI in the PUFA aging group compared with the LC aging group (all P<0.05), thereby mediating neutrophil extravasation in the PUFA aging group. The inflammation-resolving enzymes 5-lipoxygenase, cyclooxygenase-2, and heme oxyegnase-1 were altered to delay wound healing post-MI in the PUFA aging group compared with LC young and LC aging groups. PUFA aging magnifies the post-MI inflammatory response and impairs the healing response by stimulating prolonged neutrophil trafficking and proinflammatory lipid mediators.

Collaboration


Dive into the Ganesh V. Halade's collaboration.

Top Co-Authors

Avatar

Vasundhara Kain

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Merry L. Lindsey

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kevin A. Ingle

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Yonggang Ma

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gabriel Fernandes

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Sumanth D. Prabhu

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jianhua Zhang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Paul J. Williams

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Md. Mizanur Rahman

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Kristine Y. DeLeon-Pennell

University of Mississippi Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge