Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ganesha Rai is active.

Publication


Featured researches published by Ganesha Rai.


Proceedings of the National Academy of Sciences of the United States of America | 2014

High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells.

Lesley A. Mathews Griner; Rajarshi Guha; Paul Shinn; Ryan M. Young; Jonathan M. Keller; Dongbo Liu; Ian S. Goldlust; Adam Yasgar; Crystal McKnight; Matthew B. Boxer; Damien Y. Duveau; Jian-kang Jiang; Sam Michael; Tim Mierzwa; Wenwei Huang; Martin J. Walsh; Bryan T. Mott; Paresma R. Patel; William Leister; David J. Maloney; Christopher A. LeClair; Ganesha Rai; Ajit Jadhav; Brian D. Peyser; Christopher P. Austin; Scott E. Martin; Anton Simeonov; Marc Ferrer; Louis M. Staudt; Craig J. Thomas

Significance The treatment of cancer is highly reliant on drug combinations. Next-generation, targeted therapeutics are demonstrating interesting single-agent activities in clinical trials; however, the discovery of companion drugs through iterative clinical trial-and-error is not a tenable mechanism to prioritize clinically important combinations for these agents. Herein we describe the results of a large, high-throughput combination screen of the Bruton’s tyrosine kinase inhibitor ibrutinib versus a library of nearly 500 approved and investigational drugs. Multiple ibrutinib combinations were discovered through this study that can be prioritized for clinical examination. The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug–drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell–like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton’s tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL.


PLOS ONE | 2010

Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors.

Oliver N. King; Xuan Shirley Li; Masaaki Sakurai; Akane Kawamura; Nathan R. Rose; Stanley S. Ng; Amy Quinn; Ganesha Rai; Bryan T. Mott; Paul Beswick; Robert J. Klose; U. Oppermann; Ajit Jadhav; Tom D. Heightman; David J. Maloney; Christopher J. Schofield; Anton Simeonov

BACKGROUND Small molecule modulators of epigenetic processes are currently sought as basic probes for biochemical mechanisms, and as starting points for development of therapeutic agents. N(ε)-Methylation of lysine residues on histone tails is one of a number of post-translational modifications that together enable transcriptional regulation. Histone lysine demethylases antagonize the action of histone methyltransferases in a site- and methylation state-specific manner. N(ε)-Methyllysine demethylases that use 2-oxoglutarate as co-factor are associated with diverse human diseases, including cancer, inflammation and X-linked mental retardation; they are proposed as targets for the therapeutic modulation of transcription. There are few reports on the identification of templates that are amenable to development as potent inhibitors in vivo and large diverse collections have yet to be exploited for the discovery of demethylase inhibitors. PRINCIPAL FINDINGS High-throughput screening of a ∼236,000-member collection of diverse molecules arrayed as dilution series was used to identify inhibitors of the JMJD2 (KDM4) family of 2-oxoglutarate-dependent histone demethylases. Initial screening hits were prioritized by a combination of cheminformatics, counterscreening using a coupled assay enzyme, and orthogonal confirmatory detection of inhibition by mass spectrometric assays. Follow-up studies were carried out on one of the series identified, 8-hydroxyquinolines, which were shown by crystallographic analyses to inhibit by binding to the active site Fe(II) and to modulate demethylation at the H3K9 locus in a cell-based assay. CONCLUSIONS These studies demonstrate that diverse compound screening can yield novel inhibitors of 2OG dependent histone demethylases and provide starting points for the development of potent and selective agents to interrogate epigenetic regulation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124

Douglas S. Auld; Scott Lovell; Natasha Thorne; Wendy A. Lea; David J. Maloney; Min Shen; Ganesha Rai; Kevin P. Battaile; Craig J. Thomas; Anton Simeonov; Robert P. Hanzlik; James Inglese

Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 (Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 Å cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; KD = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the “off-target” effect of a small molecule is mediated by an MAI mechanism.


Molecular and Cellular Endocrinology | 2012

Integration of pro-inflammatory cytokines, 12-lipoxygenase and NOX-1 in pancreatic islet beta cell dysfunction.

Jessica R. Weaver; Theodore R. Holman; Yumi Imai; Ajit Jadhav; Victor Kenyon; David J. Maloney; Jerry L. Nadler; Ganesha Rai; Anton Simeonov; David A. Taylor-Fishwick

Elevated cellular reactive species, which can be produced by diabetic serum conditions such as elevated inflammatory cytokines, lipotoxicity or glucotoxicity contribute to islet beta cell dysfunction and cell death. Cellular pathways that result in beta cell oxidative stress are poorly resolved. In this study, stimulation of human donor islets, primary mouse islets or homogeneous beta cell lines with a cocktail of inflammatory cytokines (TNFα, IL-1β, and INFγ) significantly induced NADPH oxidase-1 (NOX-1) gene expression (p<0.05). This pro-inflammatory cytokine cocktail concomitantly induced loss of islet glucose stimulated insulin response (p<0.05), elevated expression of MCP-1 (p<0.01), increased cellular reactive oxygen species (ROS) and induced cell death. Inhibitors of NADPH oxidase, apocynin and diphenyleneiodonium, and a dual selective NOX1/4 inhibitor, blocked ROS generation (p<0.01) and induction of MCP-1 (p<0.05) by pro-inflammatory cytokines in beta cells. It has previously been reported that pro-inflammatory cytokine stimulation induces 12-lipoxygenase (12-LO) expression in human islets. 12-Hydroxyeicosatetraenoic acid (12-HETE), a product of 12-LO activity, stimulated NOX-1 expression in human islets (p<0.05). A novel selective inhibitor of 12-LO blocked induction of NOX-1, production of ROS and pro-caspase 3 cleavage by pro-inflammatory cytokines in INS-1 beta cells (p<0.01). Inhibition was not seen with a structurally related but inactive analog. Importantly, islets from human type 2 diabetic donors have an elevated expression of NOX-1 (p<0.05). This study describes an integrated pathway in beta cells that links beta cell dysfunction induced by pro-inflammatory cytokines with 12-lipoxygenase and NADPH oxidase (NOX-1) activation. Inhibitors of this pathway may provide a new therapeutic strategy to preserve beta cell mass in diabetes.


Science Translational Medicine | 2013

Targeting the JMJD2 histone demethylases to epigenetically control herpesvirus infection and reactivation from latency.

Yu Liang; Jodi L. Vogel; Jesse H. Arbuckle; Ganesha Rai; Ajit Jadhav; Anton Simeonov; David J. Maloney; Thomas M. Kristie

Inhibitors of cellular histone demethylases, enzymes required for herpesvirus infection, block early-stage infection and prevent reactivation from latency, demonstrating the potential benefit of epigenetic antiviral therapeutics. Keeping Herpesviruses Under Wraps Despite the pharmaceuticals currently used to control herpesvirus infections and recurrences, herpes simplex virus and its cousin human cytomegalovirus remain important medical pathogens that are responsible for a high incidence of herpetic blindness, complications during organ transplant, and birth defects. In addition, antiherpetic drugs target a late stage in viral infection, allowing drug-resistant viral strains to escape, and resulting in tissue damage from immune-mediated inflammation and subclinical shedding of infectious virus particles. A big goal is to develop drugs that both target the very early events in viral infection and prevent reactivation of the virus from its latent state. Upon infection of a cell with herpes simplex virus or human cytomegalovirus, the cell suppresses the expression of the first class of viral genes by wrapping the viral genome in a type of repressive nucleosomal structure that the cell uses to silence its genes. These viruses, however, have evolved in their ability to commandeer the cellular enzymatic machinery to reverse this repressive packaging, allowing the expression of the viral genes and initiation of productive infection. Identification of the specific enzymes required by these two viruses led Liang et al. to isolate a new inhibitor that blocked the “unwrapping” of the viral genomes. This compound potently suppressed infection of cultured cells with herpes simplex virus or human cytomegalovirus and suppressed the reactivation of herpes simplex virus from latency in a mouse model. Inhibitors such as the compound described in the Liang et al. study represent a new approach to suppressing early events in viral infection that may prevent the rise of resistant viral strains, limit damaging inflammation, and block viral shedding and transmission. Chromatin and the chromatin modulation machinery not only provide a regulatory matrix for enabling cellular functions such as DNA replication and transcription but also regulate the infectious cycles of many DNA viruses. Elucidation of the components and mechanisms involved in this regulation is providing targets for the development of new antiviral therapies. Initiation of infection by herpes simplex virus (HSV) requires the activity of several cellular chromatin modification enzymes including the histone demethylases LSD1 and the family of JMJD2 proteins that promote transcriptional activation of the initial set of viral genes. Depletion of the JMJD2 members or inhibition of their activity with a new drug results in repression of expression of viral immediate early genes and abrogation of infection. This inhibitor also represses the reactivation of HSV from the latent state in sensory neurons. Like HSV, the β-herpesvirus human cytomegalovirus also requires the activity of LSD1 and the JMJD2s to initiate infection, thus demonstrating the potential of this chromatin-based inhibitor to be useful against a variety of different viruses.


Nature Chemical Biology | 2016

A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate

Michael E. Pacold; Kyle R. Brimacombe; Sze Ham Chan; Jason M. Rohde; Caroline A. Lewis; Lotteke J.Y.M. Swier; Richard Possemato; Walter W. Chen; Lucas B. Sullivan; Brian Prescott Fiske; Sung Won Cho; Elizaveta Freinkman; Kivanc Birsoy; Monther Abu-Remaileh; Yoav D. Shaul; Chieh Min Liu; Minerva Zhou; Min Jung Koh; Haeyoon Chung; Shawn M. Davidson; Alba Luengo; Amy Wang; Xin Xu; Adam Yasgar; Li Liu; Ganesha Rai; Kenneth D. Westover; Matthew G. Vander Heiden; Min Shen; Nathanael S. Gray

Serine is a both a proteinogenic amino acid and the source of one-carbon units essential for de novo purine and deoxythymidine synthesis. In the canonical glucose-derived serine synthesis pathway, Homo sapiens phosphoglycerate dehydrogenase (PHGDH) catalyzes the first, rate-limiting step. Genetic loss of PHGDH is toxic towards PHGDH-overexpressing breast cancer cell lines even in the presence of exogenous serine. Here, we use a quantitative high-throughput screen to identify small molecule PHGDH inhibitors. These compounds reduce the production of glucose-derived serine in cells and suppress the growth of PHGDH-dependent cancer cells in culture and in orthotopic xenograft tumors. Surprisingly, PHGDH inhibition reduced the incorporation into nucleotides of one-carbon units from glucose-derived and exogenous serine. We conclude that glycolytic serine synthesis coordinates the use of one-carbon units from endogenous and exogenous serine in nucleotide synthesis, and suggest that one-carbon unit wasting may contribute to the efficacy of PHGDH inhibitors in vitro and in vivo.


Journal of Medicinal Chemistry | 2009

Structure Mechanism Insights and the Role of Nitric Oxide Donation Guide the Development of Oxadiazole-2-Oxides as Therapeutic Agents against Schistosomiasis

Ganesha Rai; Ahmed A. Sayed; Wendy A. Lea; Hans F. Luecke; Harinath Chakrapani; Stefanie Prast-Nielsen; Ajit Jadhav; William Leister; Min Shen; James Inglese; Christopher P. Austin; Larry K. Keefer; Elias S.J. Arnér; Anton Simeonov; David J. Maloney; David L. Williams; Craig J. Thomas

Schistosomiasis is a chronic parasitic disease affecting hundreds of millions of individuals worldwide. Current treatment depends on a single agent, praziquantel, raising concerns of emergence of resistant parasites. Here, we continue our explorations of an oxadiazole-2-oxide class of compounds we recently identified as inhibitors of thioredoxin glutathione reductase (TGR), a selenocysteine-containing flavoenzyme required by the parasite to maintain proper cellular redox balance. Through systematic evaluation of the core molecular structure of this chemotype, we define the essential pharmacophore, establish a link between the nitric oxide donation and TGR inhibition, determine the selectivity for this chemotype versus related reductase enzymes, and present evidence that these agents can be modified to possess appropriate drug metabolism and pharmacokinetic properties. The mechanistic link between exogenous NO donation and parasite injury is expanded and better defined. The results of these studies verify the utility of oxadiazole-2-oxides as novel inhibitors of TGR and as efficacious antischistosomal agents.


Journal of Medicinal Chemistry | 2010

Discovery of potent and selective inhibitors of human reticulocyte 15-lipoxygenase-1.

Ganesha Rai; Victor Kenyon; Ajit Jadhav; Lena Schultz; Michelle Armstrong; J. Brian Jameson; Eric K. Hoobler; William Leister; Anton Simeonov; Theodore R. Holman; David J. Maloney

There are a variety of lipoxygenases in the human body (hLO), each having a distinct role in cellular biology. Human reticulocyte 15-lipoxygenase-1 (15-hLO-1), which catalyzes the dioxygenation of 1,4-cis,cis-pentadiene-containing polyunsaturated fatty acids, is implicated in a number of diseases including cancer, atherosclerosis, and neurodegenerative conditions. Despite the potential therapeutic relevance of this target, few inhibitors have been reported that are both potent and selective. To this end, we have employed a quantitative high-throughput (qHTS) screen against ∼74000 small molecules in search of reticulocyte 15-hLO-1 selective inhibitors. This screen led to the discovery of a novel chemotype for 15-hLO-1 inhibition, which displays nM potency and is >7500-fold selective against the related isozymes, 5-hLO, platelet 12-hLO, epithelial 15-hLO-2, ovine cyclooxygenase-1, and human cyclooxygenase-2. In addition, kinetic experiments were performed which indicate that this class of inhibitor is tight binding, reversible, and appears not to reduce the active-site ferric ion.


Nature Communications | 2014

Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition

Michael V. Gormally; Thomas S. Dexheimer; Giovanni Marsico; Deborah A. Sanders; Christopher R. Lowe; Dijana Matak-Vinkovic; Sam Michael; Ajit Jadhav; Ganesha Rai; David J. Maloney; Anton Simeonov; Shankar Balasubramanian

The transcription factor FOXM1 binds to sequence-specific motifs on DNA (C/TAAACA) through its DNA binding domain (DBD), and activates proliferation- and differentiation-associated genes. Aberrant overexpression of FOXM1 is a key feature in oncogenesis and progression of many human cancers. Here — from a high-throughput screen applied to a library of 54,211 small molecules — we identify novel small molecule inhibitors of FOXM1 that block DNA binding. One of the identified compounds: FDI-6 (NCGC00099374) is characterized in depth and is shown to bind directly to FOXM1 protein, to displace FOXM1 from genomic targets in MCF-7 breast cancer cells, and induce concomitant transcriptional down-regulation. Global transcript profiling of MCF-7 cells by RNA-seq shows that FDI-6 specifically down regulates FOXM1-activated genes with FOXM1 occupancy confirmed by ChIP-seq. This small molecule mediated effect is selective for FOXM1-controlled genes with no effect on genes regulated by homologous forkhead family factors.


Journal of Medicinal Chemistry | 2012

Synthesis, Biological Evaluation and Structure-Activity Relationships of a Novel Class of Apurinic/Apyrimidinic Endonuclease 1 Inhibitors

Ganesha Rai; Vaddadi N. Vyjayanti; Dorjbal Dorjsuren; Anton Simeonov; Ajit Jadhav; David M. Wilson; David J. Maloney

APE1 is an essential protein that operates in the base excision repair (BER) pathway and is responsible for ≥95% of the total apurinic/apyrimidinic (AP) endonuclease activity in human cells. BER is a major pathway that copes with DNA damage induced by several anticancer agents, including ionizing radiation and temozolomide. Overexpression of APE1 and enhanced AP endonuclease activity have been linked to increased resistance of tumor cells to treatment with monofunctional alkylators, implicating inhibition of APE1 as a valid strategy for cancer therapy. We report herein the results of a focused medicinal chemistry effort around a novel APE1 inhibitor, N-(3-(benzo[d]thiazol-2-yl)-6-isopropyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl)acetamide (3). Compound 3 and related analogues exhibit single-digit micromolar activity against the purified APE1 enzyme and comparable activity in HeLa whole cell extract assays and potentiate the cytotoxicity of the alkylating agents methylmethane sulfonate and temozolomide. Moreover, this class of compounds possesses a generally favorable in vitro ADME profile, along with good exposure levels in plasma and brain following intraperitoneal dosing (30 mg/kg body weight) in mice.

Collaboration


Dive into the Ganesha Rai's collaboration.

Top Co-Authors

Avatar

David J. Maloney

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anton Simeonov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ajit Jadhav

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bryan T. Mott

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas S. Dexheimer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Akane Kawamura

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Quinn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jesse H. Arbuckle

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jodi L. Vogel

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge