Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ganglong Cui is active.

Publication


Featured researches published by Ganglong Cui.


Journal of the American Chemical Society | 2012

Intramolecular Hydrogen Bonding Plays a Crucial Role in the Photophysics and Photochemistry of the GFP Chromophore

Ganglong Cui; Zhenggang Lan; Walter Thiel

In commonly studied GFP chromophore analogues such as 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (PHBDI), the dominant photoinduced processes are cis-trans isomerization and subsequent S(1) → S(0) decay via a conical intersection characterized by a highly twisted double bond. The recently synthesized 2-hydroxy-substituted isomer (OHBDI) shows an entirely different photochemical behavior experimentally, since it mainly undergoes ultrafast intramolecular excited-state proton transfer, followed by S(1) → S(0) decay and ground-state reverse hydrogen transfer. We have chosen 4-(2-hydroxybenzylidene)-1H-imidazol-5(4H)-one (OHBI) to model the gas-phase photodynamics of such 2-hydroxy-substituted chromophores. We first use various electronic structure methods (DFT, TDDFT, CC2, DFT/MRCI, OM2/MRCI) to explore the S(0) and S(1) potential energy surfaces of OHBI and to locate the relevant minima, transition state, and minimum-energy conical intersection. These static calculations suggest the following decay mechanism: upon photoexcitation to the S(1) state, an ultrafast adiabatic charge-transfer induced excited-state intramolecular proton transfer (ESIPT) occurs that leads to the S(1) minimum-energy structure. Nearby, there is a S(1)/S(0) minimum-energy conical intersection that allows for an efficient nonadiabatic S(1) → S(0) internal conversion, which is followed by a fast ground-state reverse hydrogen transfer (GSHT). This mechanism is verified by semiempirical OM2/MRCI surface-hopping dynamics simulations, in which the successive ESIPT-GSTH processes are observed, but without cis-trans isomerization (which is a minor path experimentally with less than 5% yield). These gas-phase simulations of OHBI give an estimated first-order decay time of 476 fs for the S(1) state, which is larger but of the same order as the experimental values measured for OHBDI in solution: 270 fs in CH(3)CN and 230 fs in CH(2)Cl(2). The differences between the photoinduced processes of the 2- and 4-hydroxy-substituted chromophores are attributed to the presence or absence of intramolecular hydrogen bonding between the two rings.


Journal of Chemical Physics | 2013

State-specific heavy-atom effect on intersystem crossing processes in 2-thiothymine: A potential photodynamic therapy photosensitizer

Ganglong Cui; Wei-Hai Fang

Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T(1) (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T(1) from the initially populated singlet state S(2). The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT.


Angewandte Chemie | 2013

Photoinduced Ultrafast Wolff Rearrangement: A Non‐Adiabatic Dynamics Perspective

Ganglong Cui; Walter Thiel

One reaction, two routes: full-dimensional non-adiabatic dynamics simulations shed light on the ultrafast photoinduced Wolff rearrangement in an α-diazocarbonyl compound. The trajectories show both concerted asynchronous and stepwise processes leading to the corresponding ketene.


Journal of Chemical Physics | 2014

Generalized trajectory surface-hopping method for internal conversion and intersystem crossing

Ganglong Cui; Walter Thiel

Trajectory-based fewest-switches surface-hopping (FSSH) dynamics simulations have become a popular and reliable theoretical tool to simulate nonadiabatic photophysical and photochemical processes. Most available FSSH methods model internal conversion. We present a generalized trajectory surface-hopping (GTSH) method for simulating both internal conversion and intersystem crossing processes on an equal footing. We consider hops between adiabatic eigenstates of the non-relativistic electronic Hamiltonian (pure spin states), which is appropriate for sufficiently small spin-orbit coupling. This choice allows us to make maximum use of existing electronic structure programs and to minimize the changes to available implementations of the traditional FSSH method. The GTSH method is formulated within the quantum mechanics (QM)/molecular mechanics framework, but can of course also be applied at the pure QM level. The algorithm implemented in the GTSH code is specified step by step. As an initial GTSH application, we report simulations of the nonadiabatic processes in the lowest four electronic states (S0, S1, T1, and T2) of acrolein both in vacuo and in acetonitrile solution, in which the acrolein molecule is treated at the ab initio complete-active-space self-consistent-field level. These dynamics simulations provide detailed mechanistic insight by identifying and characterizing two nonadiabatic routes to the lowest triplet state, namely, direct S1 → T1 hopping as major pathway and sequential S1 → T2 → T1 hopping as minor pathway, with the T2 state acting as a relay state. They illustrate the potential of the GTSH approach to explore photoinduced processes in complex systems, in which intersystem crossing plays an important role.


Journal of Physical Chemistry A | 2013

Photodynamics of Schiff Base Salicylideneaniline: Trajectory Surface-Hopping Simulations

Lasse Spörkel; Ganglong Cui; Walter Thiel

We report a computational study on the photochemistry of the prototypical aromatic Schiff base salicylideneaniline in the gas phase using static electronic structure calculations (TDDFT, OM2/MRCI) and surface-hopping dynamics simulations (OM2/MRCI). Upon photoexcitation of the most stable cis-enol tautomer into the bright S1 state, we find an ultrafast excited-state proton transfer that is complete within tens of femtoseconds, without any C═N double bond isomerization. The internal conversion of the resulting S1 cis-keto species is initiated by an out-of-plane motion around the C-C single bond, which guides the molecule toward a conical intersection that provides an efficient deactivation channel to the ground state. We propose that the ease of this C-C single bond rotation regulates fluorescence quenching and photocoloration in condensed-phase environments. In line with previous work, we find the S1 cis-keto conformer to be responsible for fluorescence, especially in rigid surroundings. The S0 cis-keto species is a transient photoproduct, while the stable S0 trans-keto photoproduct is responsible for photochromism. The trajectory calculations yield roughly equal amounts of the S0 cis-enol and trans-keto photoproducts. Methodologically, full-dimensional nonadiabatic dynamics simulations are found necessary to capture the preferences among competitive channels and to gain detailed mechanistic insight into Schiff base photochemistry.


Journal of Physical Chemistry Letters | 2014

Intersystem Crossing Enables 4-Thiothymidine to Act as a Photosensitizer in Photodynamic Therapy: An Ab Initio QM/MM Study

Ganglong Cui; Walter Thiel

Motivated by its potential use as a photosensitizer in photodynamic therapy, we report the first ab initio quantum mechanics/molecular mechanics (QM/MM) study of 4-thiothymidine in aqueous solution. The core chromophore 4-thiothymine was described using the multiconfigurational CASSCF and CASPT2 QM methods, while the ribose and the solvent water molecules were treated at the MM level (CHARMM and TIP3P, respectively). The minima of the five lowest electronic states (S0, S1, S2, T1, and T2) and six minimum-energy intersections were fully optimized at the QM(CASSCF)/MM level, and their energies were further refined by single-point QM(CASPT2)/MM and CASPT2 calculations. The relevant spin-orbit couplings were also computed. We find that (1) there are three efficient photophysical pathways that account for the experimentally observed ultrafast formation of the lowest triplet state with a quantum yield of nearly unity, (2) the striking qualitative differences in the photophysical behavior of 4-thiothymine and thymine originate from the different electronic structure of their S1 states, and (3) environmental effects play an important role. The present QM/MM calculations provide mechanistic insight that may guide the design of improved photosensitizers for photodynamic therapy.


Physical Chemistry Chemical Physics | 2012

Nonadiabatic dynamics of a truncated indigo model.

Ganglong Cui; Walter Thiel

Indigo (1) is stable when exposed to ultraviolet light. We employ electronic structure calculations and nonadiabatic trajectory surface-hopping dynamics simulations to study the photoinduced processes and the photoprotection mechanism of an indigo model, bispyrroleindigo (2). Consistent with recent static ab initio calculations on 1 and 2 (Phys. Chem. Chem. Phys., 2011, 13, 1618), we find an efficient deactivation process that proceeds as follows. After vertical photoexcitation, the S(1)(ππ*) state undergoes an essentially barrierless intramolecular single proton transfer and relaxes to the minimum of an S(1) tautomer, which is structurally and energetically close to a nearby conical intersection that acts as a funnel to the S(0) state; after this internal conversion, a reverse single hydrogen transfer leads back to the equilibrium structure of the most stable S(0) tautomer. This deactivation process is completely dominant in our semiempirical OM2/MRCI nonadiabatic dynamics simulations. The other two mechanisms considered previously, namely excited-state intramolecular double proton transfer and trans-cis double bond isomerization, are not seen in any of the 325 trajectories of the present surface-hopping simulations. On the basis of the computed time-dependent populations of the S(1) state, we estimate an S(1) lifetime of about 700 fs for 2 in the gas phase.


Journal of Physical Chemistry A | 2011

Ab Initio Trajectory Surface-Hopping Study on Ultrafast Deactivation Process of Thiophene

Ganglong Cui; Wei-Hai Fang

The ultrafast S(1)((1)ππ*) → S(0) deactivation process of thiophene in the gas phase has been simulated with the complete active space self-consistent field (CASSCF) based fewest switch surface hopping method. It was found that most of the calculated trajectories (∼80%) decay to the ground state (S(0)) with an averaged time constant of 65 ± 5 fs. This is in good agreement with the experimental value of about 80 fs. Two conical intersections were determined to be responsible for the ultrafast S(1)((1)ππ*) → S(0) internal conversion process. After thiophene is excited to the S(1)((1)ππ*) state in the Franck-Condon region, it quickly relaxes to the minimum of the S(1)((1)ππ*) state, then overcomes a small barrier near the conical intersection (CI((1)ππ*/(1)πσ*)), and eventually arrives at the minimum of one C-S bond fission (S(1)((1)πσ*)). In the vicinity of this minimum, the conical intersection (CI((1)πσ*/S(0))) funnels the electron population to the ground state (S(0)), completing the ultrafast S(1)((1)ππ*) → S(0) internal conversion process. This decay mechanism matches well with previous experimental and theoretical studies.


Journal of Physical Chemistry A | 2014

Nonequilibrium H/D isotope effects from trajectory-based nonadiabatic dynamics.

Lasse Spörkel; Ganglong Cui; Axel Koslowski; Walter Thiel

Ground-state equilibrium kinetic isotope effects can be treated well in the framework of transition state theory, whereas excited-state nonequilibrium isotope effects are theoretically less explored. In this article we show for the first time that trajectory-based nonadiabatic dynamics simulations are able to reproduce experimental values for nonequilibrium H/D isotope effects in excited-state processes. We use high-level electronic structure calculations (MS-CASPT2, DFT/MRCI, and TDDFT) and full-dimensional OM2/MRCI-based nonadiabatic dynamics simulations to study the ultrafast intramolecular excited-state proton transfer (ESIPT) and the subsequent deactivation of 7-(2-pyridyl)indole (7PyIn) and its deuterated analogue (7PyIn-D). We evaluate a total of 1367 surface-hopping trajectories to establish the differences in the dynamical behavior of 7PyIn and 7PyIn-D. The computed H/D isotope effects for ESIPT and excited-state decay are consistent with recent experimental results from femtosecond pump-probe resonance-enhanced multiphoton ionization spectroscopy. We also analyze the influence of temperature fluctuations in the initially prepared sample on the photodynamics of 7PyIn and 7PyIn-D.


Journal of Physical Chemistry A | 2015

Photoprotection Mechanism of p-Methoxy Methylcinnamate: A CASPT2 Study

Xue-Ping Chang; Chun-Xiang Li; Bin-Bin Xie; Ganglong Cui

p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference complete active space self-consistent field (CASSCF) and multistate complete active-space second-order perturbation (MS-CASPT2) methods to scrutinize the photophysical and photochemical mechanism of p-MMC and its one-water complex p-MMC-W. Specifically, we optimize the stationary-point structures on the (1)ππ*, (1)nπ*, and S0 potential energy surfaces to locate the (1)ππ*/S0 and (1)ππ*/(1)nπ* conical intersections and to map (1)ππ* and (1)nπ* excited-state relaxation paths. On the basis of the results, we find that, for the trans p-MMC, the major (1)ππ* deactivation path is decaying to the dark (1)nπ* state via the in-plane (1)ππ*/(1)nπ* crossing point, which only need overcome a small barrier of 2.5 kcal/mol; the minor one is decaying to the S0 state via the (1)ππ*/S0 conical intersection induced by out-of-plane photoisomerization. For the cis p-MMC, these two decay paths are comparable (1)ππ* deactivation paths: one is decaying to the dark (1)nπ* state via the (1)ππ*/(1)nπ* crossing point, and the second is decaying to the ground state via the (1)ππ*/S0 conical intersection. One-water hydration stabilizes the (1)ππ* state and meanwhile destabilizes the (1)nπ* state. As a consequence, the (1)ππ* deactivation path to the dark (1)nπ* state is heavily inhibited. The related barriers are increased to 5.8 and 3.3 kcal/mol for the trans and cis p-MMC-W, respectively. In comparison, the barriers associated with the photoisomerization-induced (1)ππ* decay paths are reduced to 2.5 and 1.3 kcal/mol for the trans and cis p-MMC-W. Therefore, the (1)ππ* decay paths to the S0 state are dominant relaxation channels when adding one water molecule. Finally, the present work contributes a lot of knowledge to understanding the photoprotection mechanism of methylcinnamate derivatives.

Collaboration


Dive into the Ganglong Cui's collaboration.

Top Co-Authors

Avatar

Wei-Hai Fang

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang-Yang Liu

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Xue-Ping Chang

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Bin-Bin Xie

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Qiu Fang

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Shu-Hua Xia

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Pin Xiao

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Yuan-Jun Gao

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Chun-Xiang Li

Beijing Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge