Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ganji Purnachandra Nagaraju is active.

Publication


Featured researches published by Ganji Purnachandra Nagaraju.


Seminars in Cancer Biology | 2015

Broad targeting of angiogenesis for cancer prevention and therapy

Zongwei Wang; Charlotta Dabrosin; Xin Yin; Mark M. Fuster; Alexandra Arreola; W.Kimryn Rathmell; Daniele Generali; Ganji Purnachandra Nagaraju; Bassel F. El-Rayes; Domenico Ribatti; Yi Charlie Chen; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Somaira Nowsheen; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Bill Helferich; Xujuan Yang; Gunjan Guha; Dipita Bhakta; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Dorota Halicka; Sulma I. Mohammed; Asfar S. Azmi; Alan Bilsland

Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.


The Journal of Experimental Biology | 2011

Reproductive regulators in decapod crustaceans: an overview

Ganji Purnachandra Nagaraju

Summary Control of reproductive development in crustaceans requires neuropeptides, ecdysone and methyl farnesoate (MF). A major source of neuropeptides is the X-organ–sinus gland (XO–SG) complex located in the eyestalk ganglia of crustaceans. The other regulatory factors (either peptides or neuromodulators) are produced in the brain and thoracic ganglia (TG). Two other regulatory non-peptide compounds, the steroid ecdysone and the sesquiterpene MF, are produced by the Y-organs and the mandibular organs, respectively. In the current review, I have tried to recapitulate recent studies on the role of gonadal regulatory factors in regulating crustacean reproduction.


Carcinogenesis | 2014

Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis

Ganji Purnachandra Nagaraju; Ranadheer Dontula; Bassel F. El-Rayes; Sajani S. Lakka

Communication between the cell and its surrounding environment, consisting of proteinaceous (non-living material) and extracellular matrix (ECM), is important for biophysiological and chemical signaling. This signaling results in a range of cellular activities, including cell division, adhesion, differentiation, invasion, migration and angiogenesis. The ECM non-structural secretory glycoprotein called secreted protein, acidic and rich in cysteine (SPARC), plays a significant role in altering cancer cell activity and the tumors microenvironment (TME). However, the role of SPARC in cancer research has been the subject of controversy. This review mainly focuses on recent advances in understanding the contradictory nature of SPARC in relation to ECM assembly, cancer cell proliferation, adhesion, migration, apoptosis and tumor growth.


Journal of Endocrinology | 2008

Lifelong running reduces oxidative stress and degenerative changes in the testes of mice

Srinivasulu Chigurupati; Tae Gen Son; Dong Hoon Hyun; Justin D. Lathia; Mohamed R. Mughal; Jason Savell; Shuan C. Li; Ganji Purnachandra Nagaraju; Sic L. Chan; Thiruma V. Arumugam; Mark P. Mattson

Regular exercise can counteract the adverse effects of aging on the musculoskeletal and cardiovascular systems. In males, the normal aging process is associated with reductions in testosterone production and impaired spermatogenesis, but the underlying mechanisms and their potential modification by exercise are unknown. Here, we report that lifelong regular exercise (running) protects the testes against the adverse effects of advancing age, and that this effect of running is associated with decreased amounts of oxidative damage to proteins, lipids, and DNA in spermatogenic and Leydig cells. Six-month-old male mice were divided into a sedentary group and a group that ran an average of 1.75 km/day, until the mice reached the age of 20 months. Seminiferous tubules of runners exhibited a full complement of cells at different stages of the spermatogenic process and a clear central lumen with large numbers of spermatozoa, in contrast to sedentary mice that exhibited disorganized spermatogenic cells and lacked spermatocytes in a central lumen. Levels of protein carbonyls, nitrotyrosine, lipid peroxidation products, and oxidatively modified DNA were significantly greater in spermatogenic and Leydig cells of sedentary mice compared with runners. These findings suggest that lifelong regular exercise suppresses aging of testes by a mechanism that involves reduced oxidative damage to spermatogenic and Leydig cells.


Cancer Letters | 2013

Novel synthetic curcumin analogues EF31 and UBS109 are potent DNA hypomethylating agents in pancreatic cancer

Ganji Purnachandra Nagaraju; Shijun Zhu; Jing Wen; Alton B. Farris; Volkan Adsay; Roberto Diaz; James P. Snyder; Shoji Mamoru; Bassel F. El-Rayes

DNA methylation is a rational therapeutic target in pancreatic cancer. The activity of novel curcumin analogues EF31 and UBS109 as demethylating agents were investigated. MiaPaCa-2 and PANC-1 cells were treated with vehicle, curcumin, EF31 or UBS109. EF31 and UBS109 resulted in significantly higher inhibition of proliferation and cytosine methylation than curcumin. Demethylation was associated with re-expression of silenced p16, SPARC, and E-cadherin. EF31 and UBS109 inhibited HSP-90 and NF-κB leading to downregulation of DNA methyltransferase-1 (DNMT-1) expression. Transfection experiments confirmed this mechanism of action. Similar results were observed in vitro when subcutaneous tumors (MiaPaCa-2) were treated with EF31 and UBS109.


Nutrition Reviews | 2013

Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases

Ganji Purnachandra Nagaraju; Syed F. Zafar; Bassel F. El-Rayes

Genistein is a soy-derived biologically active isoflavone that exhibits diverse health-promoting effects. An increasing body of evidence shows that genistein influences lipid homeostasis and insulin resistance, counteracts inflammatory cytokines, and possesses antidiabetic properties. Genistein also impedes cancer progression by promoting apoptosis, inducing cell cycle arrest, modulating intracellular signaling pathways, and inhibiting angiogenesis and metastasis of neoplastic cells. This review summarizes the pleiotropic functions of genistein in common health disorders such as metabolic syndrome, chronic inflammatory diseases, and cancer. In the current era of uncontrolled health expenditure, a focus on the clinical development of nutritional agents with the capacity to prevent a variety of common health disorders is needed. As a micronutrient that exerts multifaceted effects ranging from antidiabetic to anticarcinogenic functions, genistein should be clinically developed further for use in the prevention and treatment of a variety of health disorders.


Angiogenesis | 2013

Antiangiogenic effects of ganetespib in colorectal cancer mediated through inhibition of HIF-1α and STAT-3

Ganji Purnachandra Nagaraju; Wungki Park; Jing Wen; Hemchandra Mahaseth; Jerome C. Landry; Alton B. Farris; Field F. Willingham; Patrick S. Sullivan; David A. Proia; Iman El-Hariry; LaTonia Taliaferro-Smith; Roberto Diaz; Bassel F. El-Rayes

Hypoxia-inducible factors (HIFs) and STAT-3 play essential roles in angiogenesis. HIF-1α and STAT-3 are clients of the heat shock protein 90 (HSP90). We hypothesized that ganetespib, a potent HSP90 inhibitor, would disrupt angiogenesis in colorectal cancer (CRC) through inhibition of HIF-1α and STAT-3. CRC cell lines (HCT116 and HT29) were used in all the experiments. Egg CAM and HUVEC assays revealed decreased angiogenesis in ganetespib treated cell lines. Ganetespib inhibited matrigel plug vascularization and tumor growth of xenografts. Significant inhibition of PDGFA, FGF2, Ang-1, Ang-2, TGFβ1, VEGF, HIF-1α and STAT-3 expression was observed in both cell lines treated ganetespib. HIF-1α overexpression resulted in the increase VEGF and STAT-3 expression and this was inhibited by ganetespib. HIF-1α knockdown inhibited VEGF and STAT-3 expression. STAT-3 knockdown inhibited VEGF but not HIF-1α expression. HSP90, STAT-3 and VEGF expression was significantly higher in CRC compared to adjacent normal tissue. Significant downregulation of PDGFA, FGF2, Ang-1, Ang-2, TGFβ1, VEGF, STAT-3 and HIF-1α mRNA was observed in the post ganetespib treatment tumor samples from patients with rectal cancer. These results collectively suggest that inhibition of HSP90 is a promising antiangiogenic strategy in CRC. HSP90 angiogenic effects are mediated through HIF-1α and STAT-3.


Journal of Endocrinology | 2011

Molecular cloning and sequence of retinoid X receptor in the green crab Carcinus maenas: a possible role in female reproduction

Ganji Purnachandra Nagaraju; Balney Rajitha; D. W. Borst

Retinoid X receptor (RXR) belongs to an ancient superfamily of nuclear hormone receptors, and plays an important role in reproduction of vertebrates. However, the reproductive role of RXR has not been clarified in crustaceans. In this investigation, we first report the cloning of two alternative splice variants of RXR cDNA from green crab ovarian RNA. RXR mRNA levels were quantified in different vitellogenic stages of the crab hepatopancreas (HP) and ovary. The expression of RXR mRNA relative to the arginine kinase mRNA was significantly increased in the HP of vitellogenic crabs in a stage-dependent manner. The relative levels of RXR mRNA in the ovary were significantly lower in vitellogenic stage III crabs than in crabs in the other three stages. These data indicate that the HP and ovary of the crab are capable of expressing RXR, which may regulate, in part, vitellogenesis in the crab. We also examined the effects of methyl farnesoate (MF) and RXR-dsRNA treatments on vitellogenin and RXR gene expression. Vitellogenin and RXR mRNA levels in HP and ovarian fragments incubated in MF were significantly (P<0.001) higher than in control tissue fragments prepared from the same animal. Treatment of crabs with RXR-dsRNA significantly (P<0.001) reduced mRNA levels for RXR and for vitellogenin as well as MF levels in hemolymph. These results indicate that, MF and RXR form a complex (MF-RXR) directly and together stimulate ovarian development in these green crabs. This interaction of RXR, MF, and ovary development axis is a novel finding and is the first report to the best of our knowledge.


Cancer Letters | 2015

Antiangiogenic effects of a novel synthetic curcumin analogue in pancreatic cancer

Ganji Purnachandra Nagaraju; Shijun Zhu; Jasmine E. Ko; Nakkana Ashritha; Ramesh Kandimalla; James P. Snyder; Mamoru Shoji; Bassel F. El-Rayes

Hypoxia-inducible factors (HIFs) and NF-κB play essential roles in cancer cell growth and metastasis by promoting angiogenesis. Heat shock protein 90 (Hsp90) serves as a regulator of HIF-1α and NF-κB protein. We hypothesized that curcumin and its analogues EF31 and UBS109 would disrupt angiogenesis in pancreatic cancer (PC) through modulation of HIF-1α and NF-κB. Conditioned medium from MIA PaCa-2 or PANC-1 cells exposed to curcumin and its analogues in vitro significantly impaired angiogenesis in an egg CAM assay and blocked HUVEC tube assembly in comparison to untreated cell medium. In vivo, EF31 and UBS109 blocked the vascularization of subcutaneous matrigel plugs developed by MIA PaCa-2 in mice. Significant inhibition of VEGF, angiopoietin 1, angiopoietin 2, platelet derived growth factor, COX-2, and TGFβ secretion was observed in PC cell lines treated with UBS109, EF31 or curcumin. Treatment with UBS109, EF31 or curcumin inhibited HSP90, NF-κB, and HIF-1α transcription in PC cell lines. UBS109 and EF31 inhibited HSP90 and HIF-1α expression even when elevated due to NF-κB (p65) overexpression. Finally, we demonstrate for the first time that curcumin analogues EF31 and UBS109 induce the downregulation of HIF-1α, Hsp90, COX-2 and VEGF in tumor samples from xenograft models compared to untreated xenografts. Altogether, these results suggest that UBS109 and EF31 are potent curcumin analogues with antiangiogenic activities.


Cancer Letters | 2015

Hypoxia inducible factor-1α: Its role in colorectal carcinogenesis and metastasis

Ganji Purnachandra Nagaraju; Pallaval Veera Bramhachari; Godi Raghu; Bassel F. El-Rayes

Tumor growth creates a hypoxic microenvironment, which promotes angiogenesis and aggressive tumor growth and invasion. HIF1α is a central molecule involved in mediating these effects of hypoxia. In colorectal cancer (CRC), hypoxia stabilizes the transcription factor HIF1α, leading to the expression of genes that are involved in tumor vascularization, metastasis/migration, cell survival and chemo-resistance. Therefore, HIF1α is a rational target for the development of new therapeutics for CRC. This article reviews the central role of HIF1α in CRC angiogenesis, metastasis, and progression as well as the strategies to target HIF1α stabilization.

Collaboration


Dive into the Ganji Purnachandra Nagaraju's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Riyaz Basha

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge