Gao-Feng Gu
East China University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gao-Feng Gu.
Physical Review E | 2010
Gao-Feng Gu; Wei-Xing Zhou
The detrending moving average (DMA) algorithm is a widely used technique to quantify the long-term correlations of nonstationary time series and the long-range correlations of fractal surfaces, which contains a parameter θ determining the position of the detrending window. We develop multifractal detrending moving average (MFDMA) algorithms for the analysis of one-dimensional multifractal measures and higher-dimensional multifractals, which is a generalization of the DMA method. The performance of the one-dimensional and two-dimensional MFDMA methods is investigated using synthetic multifractal measures with analytical solutions for backward (θ=0), centered (θ=0.5), and forward (θ=1) detrending windows. We find that the estimated multifractal scaling exponent τ(q) and the singularity spectrum f(α) are in good agreement with the theoretical values. In addition, the backward MFDMA method has the best performance, which provides the most accurate estimates of the scaling exponents with lowest error bars, while the centered MFDMA method has the worse performance. It is found that the backward MFDMA algorithm also outperforms the multifractal detrended fluctuation analysis. The one-dimensional backward MFDMA method is applied to analyzing the time series of Shanghai Stock Exchange Composite Index and its multifractal nature is confirmed.
Physical Review E | 2006
Gao-Feng Gu; Wei-Xing Zhou
One-dimensional detrended fluctuation analysis (DFA) and multifractal detrended fluctuation analysis (MFDFA) are widely used in the scaling analysis of fractal and multifractal time series because they are accurate and easy to implement. In this paper we generalize the one-dimensional DFA and MFDFA to higher-dimensional versions. The generalization works well when tested with synthetic surfaces including fractional Brownian surfaces and multifractal surfaces. The two-dimensional MFDFA is also adopted to analyze two images from nature and experiment, and nice scaling laws are unraveled.
Physica A-statistical Mechanics and Its Applications | 2008
Gao-Feng Gu; Wei Chen; Wei-Xing Zhou
We study the distributions of event-time returns and clock-time returns at different microscopic timescales using ultra-high-frequency data extracted from the limit-order books of 23 stocks traded in the Chinese stock market in 2003. We find that the returns at the one-trade timescale obey the inverse cubic law. For larger timescales (2–32 trades and 1–5 min), the returns follow the Student distribution with power-law tails. With the decrease in timescale, the tail becomes fatter, which is consistent with the variational theory in Turbulence.
EPL | 2009
Gao-Feng Gu; Wei-Xing Zhou
The Mike-Farmer (MF) model was constructed empirically based on the continuous double auction mechanism in an order-driven market, which can successfully reproduce the cubic law of returns and the diffusive behavior of stock prices at the transaction level. However, the volatility (defined by absolute return) in the MF model does not show sound long memory. We propose a modified version of the MF model by including a new ingredient, that is, long memory in the aggressiveness (quantified by the relative prices) of incoming orders, which is an important stylized fact identified by analyzing the order flows of 23 liquid Chinese stocks. Long memory emerges in the volatility synthesized from the modified MF model with the DFA scaling exponent close to 0.76, and the cubic law of returns and the diffusive behavior of prices are also produced at the same time. We also find that the long memory of order signs has no impact on the long memory property of volatility, and the memory effect of order aggressiveness has little impact on the diffusiveness of stock prices.
Physica A-statistical Mechanics and Its Applications | 2011
Xi-Yuan Qian; Gao-Feng Gu; Wei-Xing Zhou
Detrended fluctuation analysis (DFA) is a simple but very efficient method for investigating the power-law long-term correlations of non-stationary time series, in which a detrending step is necessary to obtain the local fluctuations at different timescales. We propose to determine the local trends through empirical mode decomposition (EMD) and perform the detrending operation by removing the EMD-based local trends, which gives an EMD-based DFA method. Similarly, we also propose a modified multifractal DFA algorithm, called an EMD-based MFDFA. The performance of the EMD-based DFA and MFDFA methods is assessed with extensive numerical experiments based on fractional Brownian motion and multiplicative cascading process. We find that the EMD-based DFA method performs better than the classic DFA method in the determination of the Hurst index when the time series is strongly anticorrelated and the EMD-based MFDFA method outperforms the traditional MFDFA method when the moment order q of the detrended fluctuations is positive. We apply the EMD-based MFDFA to the 1 min data of Shanghai Stock Exchange Composite index, and the presence of multifractality is confirmed. We also analyze the daily Austrian electricity prices and confirm its anti-persistence.
European Physical Journal B | 2007
Gao-Feng Gu; Wei Chen; Wei-Xing Zhou
Abstract.The statistical properties of the bid-ask spread of a frequently traded Chinese stock listed on the Shenzhen Stock Exchange are investigated using the limit-order book data. Three different definitions of spread are considered based on the time right before transactions, the time whenever the highest buying price or the lowest selling price changes, and a fixed time interval. The results are qualitatively similar no matter linear prices or logarithmic prices are used. The average spread exhibits evident intraday patterns consisting of a big L-shape in morning transactions and a small L-shape in the afternoon. The distributions of the spread with different definitions decay as power laws. The tail exponents of spreads at transaction level are well within the interval (2,3) and that of average spreads are well in line with the inverse cubic law for different time intervals. Based on the detrended fluctuation analysis, we found the evidence of long memory in the bid-ask spread time series for all three definitions, even after the removal of the intraday pattern. Using the classical box-counting approach for multifractal analysis, we show that the time series of bid-ask spread do not possess multifractal nature.
New Journal of Physics | 2015
Wen-Jie Xie; Zhi-Qiang Jiang; Gao-Feng Gu; Xiong Xiong; Wei-Xing Zhou
Many complex systems generate multifractal time series which are long-range cross-correlated. Numerous methods have been proposed to characterize the multifractal nature of these long-range cross correlations. However, several important issues about these methods are not well understood and most methods consider only one moment order. We study the joint multifractal analysis based on partition function with two moment orders, which was initially invented to investigate fluid fields, and derive analytically several important properties. We apply the method numerically to binomial measures with multifractal cross correlations and bivariate fractional Brownian motions without multifractal cross correlations. For binomial multifractal measures, the explicit expressions of mass function, singularity strength and multifractal spectrum of the cross correlations are derived, which agree excellently with the numerical results. We also apply the method to stock market indexes and unveil intriguing multifractality in the cross correlations of index volatilities.
Physica A-statistical Mechanics and Its Applications | 2008
Gao-Feng Gu; Wei Chen; Wei-Xing Zhou
We have analyzed the statistical probabilities of limit-order book (LOB) shape through building the book using the ultra-high-frequency data from 23 liquid stocks traded on the Shenzhen Stock Exchange in 2003. We find that the averaged LOB shape has a maximum away from the same best price for both buy and sell sides of the LOB. The LOB shape function has nice exponential form in the right tail. The buy side of the LOB is found to be abnormally thicker for the price levels close to the same best although there are much more sell orders on the book. We also find that the LOB shape functions for both buy and sell sides have periodic peaks with a period of five. The 1-min averaged volumes at fixed tick level follow log-normal distributions except for the left tails which display power-law behaviors, exhibit abnormal intraday patterns with increasing trend, and possess long memory that cannot be explained by the intraday patterns. Academic implications of our empirical results are also briefly discussed.
European Physical Journal B | 2009
Gao-Feng Gu; Wei-Xing Zhou
AbstractRecently, Mike and Farmer have constructed a very powerful and realistic behavioral model to mimick the dynamic process of stock price formation based on the empirical regularities of order placement and cancelation in a purely order-driven market, which can successfully reproduce the whole distribution of returns, not only the well-known power-law tails, together with several other important stylized facts. There are three key ingredients in the Mike-Farmer (MF) model: the long memory of order signs characterized by the Hurst index Hs, the distribution of relative order prices x in reference to the same best price described by a Student distribution (or Tsallis’ q-Gaussian), and the dynamics of order cancelation. They showed that different values of the Hurst index Hs and the freedom degree αx of the Student distribution can always produce power-law tails in the return distribution fr(r) with different tail exponent αr. In this paper, we study the origin of the power-law tails of the return distribution fr(r) in the MF model, based on extensive simulations with different combinations of the left part L(x) for x < 0 and the right part R(x) for x > 0 of fx(x). We find that power-law tails appear only when L(x) has a power-law tail, no matter R(x) has a power-law tail or not. In addition, we find that the distributions of returns in the MF model at different timescales can be well modeled by the Student distributions, whose tail exponents are close to the well-known cubic law and increase with the timescale.
Physica A-statistical Mechanics and Its Applications | 2009
Fei Ren; Gao-Feng Gu; Wei-Xing Zhou
We perform return interval analysis of 1-min realized volatility defined by the sum of absolute high-frequency intraday returns for the Shanghai Stock Exchange Composite Index (SSEC) and 22 constituent stocks of SSEC. The scaling behavior and memory effect of the return intervals between successive realized volatilities above a certain threshold q are carefully investigated. In comparison with the volatility defined by the closest tick prices to the minute marks, the return interval distribution for the realized volatility shows a better scaling behavior since 20 stocks (out of 22 stocks) and the SSEC pass the Kolmogorov–Smirnov (KS) test and exhibit scaling behaviors, among which the scaling function for 8 stocks could be approximated well by a stretched exponential distribution revealed by the KS goodness-of-fit test under the significance level of 5%. The improved scaling behavior is further confirmed by the relation between the fitted exponent γ and the threshold q. In addition, the similarity of the return interval distributions for different stocks is also observed for the realized volatility. The investigation of the conditional probability distribution and the detrended fluctuation analysis (DFA) show that both short-term and long-term memory exists in the return intervals of realized volatility.