Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gao-Jun Teng is active.

Publication


Featured researches published by Gao-Jun Teng.


eLife | 2015

Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network

Yu-Chen Chen; Xiaowei Li; Lijie Liu; Jian Wang; Chun-Qiang Lu; Ming-Ming Yang; Yun Jiao; Feng-Chao Zang; Kelly E. Radziwon; Guang-Di Chen; Wei Sun; Vijaya Prakash Krishnan Muthaiah; Richard Salvi; Gao-Jun Teng

Hearing loss often triggers an inescapable buzz (tinnitus) and causes everyday sounds to become intolerably loud (hyperacusis), but exactly where and how this occurs in the brain is unknown. To identify the neural substrate for these debilitating disorders, we induced both tinnitus and hyperacusis with an ototoxic drug (salicylate) and used behavioral, electrophysiological, and functional magnetic resonance imaging (fMRI) techniques to identify the tinnitus–hyperacusis network. Salicylate depressed the neural output of the cochlea, but vigorously amplified sound-evoked neural responses in the amygdala, medial geniculate, and auditory cortex. Resting-state fMRI revealed hyperactivity in an auditory network composed of inferior colliculus, medial geniculate, and auditory cortex with side branches to cerebellum, amygdala, and reticular formation. Functional connectivity revealed enhanced coupling within the auditory network and segments of the auditory network and cerebellum, reticular formation, amygdala, and hippocampus. A testable model accounting for distress, arousal, and gating of tinnitus and hyperacusis is proposed. DOI: http://dx.doi.org/10.7554/eLife.06576.001


NeuroImage: Clinical | 2014

Aberrant spontaneous brain activity in chronic tinnitus patients revealed by resting-state functional MRI.

Yu-Chen Chen; Jian Zhang; Xiaowei Li; Wenqing Xia; Xu Feng; Bo Gao; Shenghong Ju; Jian Wang; Richard Salvi; Gao-Jun Teng

Objective The neural mechanisms that give rise to the phantom sound of tinnitus are poorly understood. This study aims to investigate whether aberrant spontaneous brain activity exists in chronic tinnitus patients using resting-state functional magnetic resonance imaging (fMRI) technique. Materials and methods A total of 31 patients with chronic tinnitus patients and 32 healthy age-, sex-, and education-matched healthy controls were prospectively examined. Both groups had normal hearing thresholds. We calculated the amplitude of low-frequency fluctuations (ALFFs) of fMRI signals to measure spontaneous neuronal activity and detect the relationship between fMRI information and clinical data of tinnitus. Results Compared with healthy controls, we observed significant increased ALFF within several selected regions including the right middle temporal gyrus (MTG), right superior frontal gyrus (SFG), and right angular gyrus; decreased ALFF was detected in the left cuneus, right middle occipital gyrus and bilateral thalamus. Moreover, tinnitus distress correlated positively with increased ALFF in right MTG and right SFG; tinnitus duration correlated positively with higher ALFF values in right SFG. Conclusions The present study confirms that chronic tinnitus patients have aberrant ALFF in many brain regions, which is associated with specific clinical tinnitus characteristics. ALFF disturbance in specific brain regions might be used to identify the neuro-pathophysiological mechanisms in chronic tinnitus patients.


Neural Plasticity | 2015

Altered Intra- and Interregional Synchronization in Resting-State Cerebral Networks Associated with Chronic Tinnitus

Yu-Chen Chen; Jian Zhang; Xiaowei Li; Wenqing Xia; Xu Feng; Cheng Qian; Xiang-Yu Yang; Chun-Qiang Lu; Jian Wang; Richard Salvi; Gao-Jun Teng

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls. Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n = 29) with normal hearing and well-matched healthy controls (n = 30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress. Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r = 0.459, P = 0.012 and r = 0.479, P = 0.009, resp.). Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


European Journal of Radiology | 2015

Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus.

Jian Zhang; Yu-Chen Chen; Xu Feng; Ming Yang; Bin Liu; Cheng Qian; Jian Wang; Richard Salvi; Gao-Jun Teng

PURPOSE The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. MATERIALS AND METHODS Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. RESULTS We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. CONCLUSIONS Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in neuropathological features of tinnitus.


BioMed Research International | 2015

Altered Interhemispheric Functional Coordination in Chronic Tinnitus Patients

Yu-Chen Chen; Wenqing Xia; Yuan Feng; Xiaowei Li; Jian Zhang; Xu Feng; Cong-Xiao Wang; Yu Cai; Jian Wang; Richard Salvi; Gao-Jun Teng

Purpose. Recent studies suggest that tinnitus may be due in part to aberrant callosal structure and interhemispheric interaction. To explore this hypothesis we use a novel method, voxel-mirrored homotopic connectivity (VMHC), to examine the resting-state interhemispheric functional connectivity and its relationships with clinical characteristics in chronic tinnitus patients. Materials and Methods. Twenty-eight chronic tinnitus patients with normal hearing thresholds and 30 age-, sex-, education-, and hearing threshold-matched healthy controls were included in this study and underwent the resting-state fMRI scanning. We computed the VMHC to analyze the interhemispheric functional coordination between homotopic points of the brain in both groups. Results. Compared to the controls, tinnitus patients showed significantly increased VMHC in the middle temporal gyrus, middle frontal gyrus, and superior occipital gyrus. In tinnitus patients, a positive correlation was found between tinnitus duration and VMHC of the uncus. Moreover, correlations between VMHC changes and tinnitus distress were observed in the transverse temporal gyrus, superior temporal pole, precentral gyrus, and calcarine cortex. Conclusions. These results show altered interhemispheric functional connectivity linked with specific tinnitus characteristics in chronic tinnitus patients, which may be implicated in the neuropathophysiology of tinnitus.


Neuroscience | 2015

Changes in the default mode networks of individuals with long-term unilateral sensorineural hearing loss

G.-Y. Zhang; Ming Yang; Bin Liu; Zhi-chun Huang; Hua-Jun Chen; P.-P. Zhang; Jing Li; J.-Y. Chen; Lijie Liu; Jian Wang; Gao-Jun Teng

Hearing impairment contributes to cognitive dysfunction. Previous studies have found changes of functional connectivity in the default mode network (DMN) associated with cognitive processing in individuals with sensorineural hearing loss (SNHL). Whereas the changes in the DMN in patients with long-term unilateral SNHL (USNHL) is still not entirely clear. In this work, we analyzed resting-state functional magnetic resonance imaging (fMRI) data and neuropsychological test scores from normal hearing subjects (n = 11) and patients (n = 21) with long-term USNHL. Functional connectivity and nodal topological properties were computed for every brain region in the DMN. Analysis of covariance (ANCOVA) and post hoc analyses were conducted to identify differences between normal controls and patients for each measure. Results indicated that the left USNHL presented enhanced connectivity (p < 0.05, false discovery rate (FDR) corrected), and significant changes (p < 0.05, Bonferroni corrected) of the nodal topological properties in the DMN compared with the control. More changes in the DMN have been found in the left than right long-term USNHL (RUSNHL). However, the neuropsychological tests did not show significant differences between the USNHL and the control. These findings suggest that long-term USNHL contributes to changes in the DMN, and these changes might affect cognitive abilities in patients with long-term USNHL. Left hearing loss affects the DMN more than the right hearing loss does. The fMRI measures might be more sensitive for observing cognitive changes in patients with hearing loss than clinical neuropsychological tests. This study provides some insights into the mechanisms of the association between hearing loss and cognitive function.


Frontiers in Neural Circuits | 2015

Frequency-specific alternations in the amplitude of low-frequency fluctuations in chronic tinnitus.

Yu-Chen Chen; Wenqing Xia; Bin Luo; Vijaya Prakash Krishnan Muthaiah; Zhenyu Xiong; Jian Zhang; Jian Wang; Richard Salvi; Gao-Jun Teng

Tinnitus, a phantom ringing, buzzing, or hissing sensation with potentially debilitating consequences, is thought to arise from aberrant spontaneous neural activity at one or more sites within the central nervous system; however, the location and specific features of these oscillations are poorly understood with respect to specific tinnitus features. Recent resting-state functional magnetic resonance imaging (fMRI) studies suggest that aberrant fluctuations in spontaneous low-frequency oscillations (LFO) of the blood oxygen level-dependent (BOLD) signal may be an important factor in chronic tinnitus; however, the role that frequency-specific components of LFO play in subjective tinnitus remains unclear. A total of 39 chronic tinnitus patients and 41 well-matched healthy controls participated in the resting-state fMRI scans. The LFO amplitudes were investigated using the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) in two different frequency bands (slow-4: 0.027–0.073 Hz and slow-5: 0.01–0.027 Hz). We observed significant differences between tinnitus patients and normal controls in ALFF/fALFF in the two bands (slow-4 and slow-5) in several brain regions including the superior frontal gyrus (SFG), inferior frontal gyrus, middle temporal gyrus, angular gyrus, supramarginal gyrus, and middle occipital gyrus. Across the entire subject pool, significant differences in ALFF/fALFF between the two bands were found in the midbrain, basal ganglia, hippocampus and cerebellum (Slow 4 > Slow 5), and in the middle frontal gyrus, supramarginal gyrus, posterior cingulate cortex, and precuneus (Slow 5 > Slow 4). We also observed significant interaction between frequency bands and patient groups in the orbitofrontal gyrus. Furthermore, tinnitus distress was positively correlated with the magnitude of ALFF in right SFG and the magnitude of fALFF slow-4 band in left SFG, whereas tinnitus duration was positively correlated with the magnitude of ALFF in right SFG and the magnitude of fALFF slow-5 band in left SFG. Resting-state fMRI provides an unbiased method for identifying aberrant spontaneous LFO occurring throughout the central nervous system. Chronic tinnitus patients have widespread abnormalities in ALFF and fALFF slow-4 and slow-5 band which are correlated with tinnitus distress and duration. These results provide new insights on the neuropathophysiology of chronic tinnitus; therapies capable of reversing these aberrant patterns may reduce tinnitus distress.


Neuroscience | 2016

Changes of the directional brain networks related with brain plasticity in patients with long-term unilateral sensorineural hearing loss.

G.-Y. Zhang; Ming Yang; Bin Liu; Zhi-chun Huang; Jing Li; J.-Y. Chen; Hua-Jun Chen; P.-P. Zhang; Lijie Liu; Jian Wang; Gao-Jun Teng

Previous studies often report that early auditory deprivation or congenital deafness contributes to cross-modal reorganization in the auditory-deprived cortex, and this cross-modal reorganization limits clinical benefit from cochlear prosthetics. However, there are inconsistencies among study results on cortical reorganization in those subjects with long-term unilateral sensorineural hearing loss (USNHL). It is also unclear whether there exists a similar cross-modal plasticity of the auditory cortex for acquired monaural deafness and early or congenital deafness. To address this issue, we constructed the directional brain functional networks based on entropy connectivity of resting-state functional MRI and researched changes of the networks. Thirty-four long-term USNHL individuals and seventeen normally hearing individuals participated in the test, and all USNHL patients had acquired deafness. We found that certain brain regions of the sensorimotor and visual networks presented enhanced synchronous output entropy connectivity with the left primary auditory cortex in the left long-term USNHL individuals as compared with normally hearing individuals. Especially, the left USNHL showed more significant changes of entropy connectivity than the right USNHL. No significant plastic changes were observed in the right USNHL. Our results indicate that the left primary auditory cortex (non-auditory-deprived cortex) in patients with left USNHL has been reorganized by visual and sensorimotor modalities through cross-modal plasticity. Furthermore, the cross-modal reorganization also alters the directional brain functional networks. The auditory deprivation from the left or right side generates different influences on the human brain.


Neural Plasticity | 2017

Nicotinamide Administration Improves Remyelination after Stroke

Cong-Xiao Wang; Yi Zhang; Jie Ding; Zhen Zhao; Cheng Qian; Ying Luan; Gao-Jun Teng

Aims Stroke is a leading cause of morbidity and mortality. This study aimed to determine whether nicotinamide administration could improve remyelination after stroke and reveal the underlying mechanism. Methods Adult male C57BL/6J mice were intraperitoneally (i.p.) administered with nicotinamide (200 mg/kg, daily) or saline after stroke induced by photothrombotic occlusion of the middle cerebral artery. FK866 (3 mg/kg, daily, bis in die), an inhibitor of NAMPT, and ANA-12 (0.5 mg/kg, daily), an antagonist of tropomyosin-related kinase B (TrkB), were administered intraperitoneally 1 h before nicotinamide administration. Functional recovery, MRI, and histological assessment were performed after stroke at different time points. Results The nicotinamide-treated mice showed significantly lower infarct area 7 d after stroke induction and significantly higher fractional anisotropy (FA) in the ipsilesional internal capsule (IC) 14 d after stroke induction than the other groups. Higher levels of NAD+, BDNF, and remyelination markers were observed in the nicotinamide-treated group. FK866 administration reduced NAD+ and BDNF levels in the nicotinamide-treated group. ANA-12 administration impaired the recovery from stroke with no effect on NAD+ and BDNF levels. Furthermore, lesser functional deficits were observed in the nicotinamide-treated group than in the control group. Conclusions Nicotinamide administration improves remyelination after stroke via the NAD+/BDNF/TrkB pathway.


European Journal of Radiology | 2006

Ultrafine needle CO2 splenoportography: a comparative investigation with transarterial portography and MR portography.

Gao-Jun Teng; Gang Deng; Zhen-Sheng Liu; Wen Fang; Guang-Yu Zhu; Guo-Zhao Li; Jin-He Guo; Shi-Cheng He; Yong-Hua Dong

Collaboration


Dive into the Gao-Jun Teng's collaboration.

Top Co-Authors

Avatar

Jian Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Chen Chen

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T Pan

Southeast University

View shared research outputs
Researchain Logo
Decentralizing Knowledge