Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaofei Hu is active.

Publication


Featured researches published by Gaofei Hu.


Small | 2015

Cu7S4 Nanosuperlattices with Greatly Enhanced Photothermal Efficiency

Jiabin Cui; Rui Jiang; Suying Xu; Gaofei Hu; Leyu Wang

According to the simulation, the self-assembly of Cu7 S4 nanocrystals would enhance the photothermal conversion efficiency (PCE) because of the localized surface plasmon resonance effects, which is highly desirable for photothermal therapy (PTT). A new strategy to synthesize Cu7 S4 nanosuperlattices with greatly enhanced PCE up to 65.7% under irradiation of 808 nm near infrared light is reported here. By tuning the surface properties of Cu7 S4 nanocrystals during the synthesis via thermolysis of a new single precursor, dispersed nanoparticles (NPs), rod-like alignments, and nanosuperlattices are obtained, respectively. To explore their PTT applications, these hydrophobic nanostructures are transferred into water by coating with home-made amphiphilic polymer while maintaining their original structures. Under identical conditions, the PCE are 48.62% and 56.32% for dispersed NPs and rod-like alignments, respectively. As expected, when the nanoparticles are self-assembled into nanosuperlattices, the PCE is greatly enhanced up to 65.7%. This strong PCE, along with their excellent photothermal stability and good biocompatibility, renders these nanosuperlattices good candidates as PTT agents. In vitro photothermal ablation performances have undoubtedly proved the excellent PCE of our Cu7 S4 nanosuperlattices. This research offers a versatile and effective solution to get PTT agents with high photothermal efficiency.


Analytical Chemistry | 2015

Fluorescent nanosensors via photoinduced polymerization of hydrophobic inorganic quantum dots for the sensitive and selective detection of nitroaromatics.

Min Bai; Shuina Huang; Suying Xu; Gaofei Hu; Leyu Wang

We developed an efficient one-pot strategy for the preparation of hydrophilic amine-functionalized nanocomposites by using hydrophobic fluorescence quantum dots ZnS:Mn(2+)@allyl mercaptan (QDs@AM) as building blocks through novel light-induced in situ polymerization. The average size of as-prepared hydrophilic nanocomposites was ∼50 nm, which could be further tuned by varying the concentrations of the monomers. Importantly, these nanocomposites were further utilized for the facile, highly sensitive, and selective detection of nitroaromatics. The linear ranges for 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP) lie in 0.01-0.5 μg/mL and 0.05-8.0 μg/mL, respectively, barely interfered with by other nitroaromatics such as 2,4-dinitrotoluene (DNT) and nitrobenzene (NB). Moreover, the novel surface modification method developed here offered a general strategy for fabricating hydrophobic nanocomposites with hydrophilic properties and indicated various potential applications including sensing and imaging.


ACS Nano | 2016

Ultrahigh 19F Loaded Cu1.75S Nanoprobes for Simultaneous 19F Magnetic Resonance Imaging and Photothermal Therapy

Hongli Chen; Manli Song; Juan Tang; Gaofei Hu; Suying Xu; Zhide Guo; Nannan Li; Jiabin Cui; Xianzhong Zhang; Xiaoyuan Chen; Leyu Wang

(19)F magnetic resonance imaging (MRI) is a powerful noninvasive, sensitive, and accurate molecular imaging technique for early diagnosis of diseases. The major challenge of (19)F MRI is signal attenuation caused by the reduced solubility of probes with increased number of fluorine atoms and the restriction of molecular mobility. Herein, we present a versatile one-pot strategy for the fabrication of a multifunctional nanoprobe with high (19)F loading (∼2.0 × 10(8xa019)F atoms per Cu1.75S nanoparticle). Due to the high (19)F loading and good molecular mobility that results from the small particle size (20.8 ± 2.0 nm) and ultrathin polymer coating, this nanoprobe demonstrates ultrahigh (19)F MRI signal. In vivo tests show that this multifunctional nanoprobe is suitable for (19)F MRI and photothermal therapy. This versatile fabrication strategy has also been readily extended to other single-particle nanoprobes for ablation and sensitive multimodal imaging.


Analytical Chemistry | 2016

A Fluorescent Chemodosimeter for Live-Cell Monitoring of Aqueous Sulfides

Shiguo Wang; Suying Xu; Gaofei Hu; Xilin Bai; Tony D. James; Leyu Wang

Aqueous sulfides are emerging signaling agents implicated in various pathological and physiological processes. The development of sensitive and selective methods for the sensing of these sulfides is therefore very important. Herein, we report that the as-synthesized 1-oxo-1H-phenalene-2,3-dicarbonitrile (OPD) compound provides promising fluorescent properties and unique reactive properties toward aqueous sulfides. It was found that OPD showed high selectivity and sensitivity toward Na2S over thiols and other inorganic sulfur compounds through a sulfide involved reaction which was confirmed by high-resolution mass spectroscopy (HRMS) and nuclear magnetic resonance (NMR) results. The fluorescence intensity increases linearly with sulfide concentration in the range of 1.0-30 μM with a limit of detection of 52 nM. This novel fluorescent probe was further exploited for the fluorescence imaging sensing of aqueous sulfide in HeLa cells.


Analytical Chemistry | 2016

Ultrasmall Organic Nanoparticles with Aggregation-Induced Emission and Enhanced Quantum Yield for Fluorescence Cell Imaging

Suying Xu; Xilin Bai; Jingwen Ma; Minmin Xu; Gaofei Hu; Tony D. James; Leyu Wang

The use of fluorescence probes for biomedical imaging has attracted significant attention over recent years owing to their high resolution at cellular level. The probes are available in many formats including small particle size based imaging agents which are considered to be promising candidates, due to their excellent stabilities. Yet, concerns over the potential cytotoxicity effects of inorganic luminescent particles have led to questions about their suitability for imaging applications. Exploration of alternatives inspired us to use organic fluorophores with aggregation-induced emission (AIE), prepared by functionalizing the amine group on tetraphenylethene with 3,5-bis(trifluoromethyl)phenyl isocyanate. The as-synthesized novel AIE fluorophore (TPE-F) display enhanced quantum yield and longer lifetime as compared with its counterparts (4,4,4″,4‴-(ethene-1,1,2,2-tetrayl)tetraaniline, TPE-AM). Furthermore, the TPE-F was encapsulated into small-size organic nanoparticles (NPs; dynamic light scattering size, ∼10 nm) with polysuccinimide (PSI). The biocompatibility, excellent stability, bright fluorescence, and selective cell targeting of these NPs enable the as-prepared TPE-F NPs to be suitable for specific fluorescence cell imaging.


Nano Research | 2016

Superfluorinated copper sulfide nanoprobes for simultaneous 19F magnetic resonance imaging and photothermal ablation

Gaofei Hu; Juan Tang; Xilin Bai; Suying Xu; Leyu Wang

Copper sulfide (Cu7S4) nanoparticles coated with an ultra-high payload (~5.0 × 107 fluorine atoms per particle) of fluorinated ligands (oleylamine functionalized 3,5-bis(trifluoromethyl)benzaldehyde, 19FOAm) exhibited a single intense 19F magnetic resonance (MR) signal and efficient near infrared photothermal performance in water medium. In vivo assessment revealed strong 19F MR signals at cancerous lesions and effective inhibition of tumor growth after photothermal treatment, indicating the great potential of these fabricated nanoprobes for simultaneous 19F MR imaging and photothermal therapy.


ACS Applied Materials & Interfaces | 2016

A General and Facile Strategy to Fabricate Multifunctional Nanoprobes for Simultaneous 19F Magnetic Resonance Imaging, Optical/Thermal Imaging, and Photothermal Therapy

Gaofei Hu; Nannan Li; Juan Tang; Suying Xu; Leyu Wang

(19)F magnetic resonance imaging (MRI), due to its high sensitivity and negligible background, is anticipated to be a powerful noninvasive, sensitive, and accurate molecular imaging technique. However, the major challenge of (19)F MRI is to increase the number of (19)F atoms while maintaining the solubility and molecular mobility of the probe. Here, we successfully developed a facile and general strategy to synthesize the multifunctional (19)F MRI nanoprobes by encapsulating the hydrophobic inorganic nanoparticles (NPs) into a hybrid polymer micelle consisting of hydrolysates of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDTES) and oleylamine-functionalized poly(succinimide) (PSIOAm). Due to their good water dispersibility, excellent molecular mobility resulting from the ultrathin coating, and high (19)F atom numbers, these nanoprobes generate a separate sharp singlet of (19)F nuclear magnetic resonance (NMR) signal (at -82.8 ppm) with half peak width of ∼28 Hz, which is highly applicable for (19)F MRI. Significantly, by varying the inorganic core from metals (Au), oxides (Fe3O4), fluorides (NaYF4:Yb(3+)/Er(3+)), and phosphates (YPO4) to semiconductors (Cu7S4 and Ag2S, ZnS:Mn(2+)) NPs, which renders the nanoprobes multifunctional properties such as photothermal ability (Au, Cu7S4), magnetism (Fe3O4), fluorescence (ZnS:Mn(2+)), near-infrared (NIR) fluorescence (Ag2S), and upconversion (UC) luminescence. Meanwhile, the as-prepared nanoprobes possess relatively small sizes (about 50 nm), which is beneficial for long-time circulation. The proof-of-concept in vitro (19)F NMR and photothermal ablation of ZnS:Mn(2+)@PDTES/PSIOAm and Cu7S4@PDTES/PSIOAm nanoprobes further suggest that these nanoprobes hold wide potentials for multifunctional applications in biomedical fields.


RSC Advances | 2016

Solar-driven broad spectrum fungicides based on monodispersed Cu7S4 nanorods with strong near-infrared photothermal efficiency

Gaofei Hu; Tiantian Xu; Xiaoqing Chen; Tony D. James; Suying Xu

The development of low-cost and biocompatible inorganic photothermal nanoagents with broadband sunlight absorption and high photothermal conversion efficiency as broad spectrum fungicides is highly desirable for the large scale antibacterial treatment especially in the wild, because of their highly efficient anti-bacteria ability via solar irradiation. Here, we present a facile strategy for the synthesis of Cu7S4 nanorods (NRs) with broadband light absorption (300–3300 nm) and high photothermal conversion efficiency (57.8%, 808 nm), and the use of these NRs as broad spectrum fungicides for efficient disinfection using natural sunlight as light source. In the presence of Cu7S4 NRs, with natural sunlight irradiation (70 mW cm−2), both Gram-positive (S. aureus) and Gram-negative (E. coli) bacterium strains (2 mL, 106 mL−1) were completely killed in 10 min. These results suggest that our Cu7S4 NRs are effective and broad spectrum photothermal anti-bacterial agents regardless of drug resistance, that are particularly suitable for anti-bacteria activity in the wild using solar irradiation where artificial light sources are not available. Due to their strong near infrared (NIR) absorption, these biocompatible and low-cost Cu7S4 NRs may also serve as promising agents for photothermal therapy of tumors, disinfection in clinics, food sterilization and environmental treatment.


Science China. Materials | 2017

Multifunctional Cu 1.94 S-Bi 2 S 3 @polymer nanocomposites for computed tomography imaging guided photothermal ablation

Xiaoquan Lu; Yuanbao Li; Xilin Bai; Gaofei Hu; Leyu Wang

The doping of radiocontrast agent such as bismuth (Bi) in copper chalcogenide nanocrystals for computed tomography (CT) imaging guided photothermal therapy (PTT) has drawn increasing attention. However, the doping of Bi often suffers from the weak CT signal due to the low Bi doping concentration and deteriorates the PTT efficacy of copper chalcogenides. Here we report a multifunctional nanoprobe by encapsulating both Cu1.94S and Bi2S3 nanocrystals into a biocompatible poly(amino acid) matrix with size of ~85 nm for CT imaging guided PTT. The amount of nanocrystals and the ratio of Cu1.94S-to-Bi2S3 in the multifunctional nanocomposites (NCs) are tunable toward both high photothermal conversion efficiency (~31%) and excellent CT imaging capability (27.8 HU g L−1). These NCs demonstrate excellent effects for photothermal ablation of tumors after intratumoral injection on 4T1 tumor-bearing mice. Our study may provide a facile strategy for the fabrication of multi-functional theranostics towards simultaneous strong CT signal and excellent PTT.摘要铋掺杂硫化铜纳米晶用于CT成像指导的光热治疗已经引起了人们的广泛关注. 然而, 低剂量的铋掺杂CT信号弱, 高剂量铋掺杂又会减弱硫化铜的光热效果. 本文报道了一种多功能纳米探针, 用两亲性高分子将油溶性Cu1.94S和Bi2S3纳米晶同时封装于约85 nm大小的纳米微球中,用于CT成像指导光热治疗. 多功能纳米探针中Cu1.94S和Bi2S3纳米晶的量和比例能够灵活调节, 从而得到较高的光热转换效率(~31%)和良好的CT成像能力(27.8 HU g L−1). 这些纳米探针在4T1荷瘤小鼠进行瘤内注射后, 显示了良好的CT成像与肿瘤光热治疗效果. 该复合纳米探针的制备方法还可用于其他多功能纳米探针的制备.


Journal of the American Chemical Society | 2018

Edge-Site Engineering of Atomically Dispersed Fe–N4 by Selective C–N Bond Cleavage for Enhanced Oxygen Reduction Reaction Activities

Rui Jiang; Li Li; Tian Sheng; Gaofei Hu; Yueguang Chen; Leyu Wang

Single-atom metal-nitrogen-carbon (M-N-C) catalysts have sparked intense interests, but the catalytic contribution of N-bonding environment neighboring M-N4 sites lacks attention. Herein, a series of Fe-N-C nanoarchitectures have been prepared, which confer adjustable numbers of atomically dispersed Fe-N4 sites, tunable hierarchical micro-mesoporous structures and intensified exposure of interior active sites. The optimization between Fe-N4 single sites and carbon matrix delivers superior oxygen reduction reaction activity (half-wave potential of 0.915 V vs RHE in alkaline medium) with remarkable stability and high atom-utilization efficiency (almost 10-fold enhancement). Both experiments and theoretical calculations verified the selective C-N bond cleavage adjacent to Fe center induced by porosity engineering could form edge-hosted Fe-N4 moieties, and therefore lower the overall oxygen reduction reaction barriers comparing to intact atomic configuration. These findings provide a new pathway for the integrated engineering of geometric and electronic structures of single-atom materials to improve their catalytic performance.

Collaboration


Dive into the Gaofei Hu's collaboration.

Top Co-Authors

Avatar

Leyu Wang

Beijing University of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Suying Xu

Beijing University of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Xilin Bai

Beijing University of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Juan Tang

Beijing University of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiabin Cui

Beijing University of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Minmin Xu

Beijing University of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Rui Jiang

Beijing University of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Chang Guo

Beijing University of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Hongli Chen

Beijing University of Chemical Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge