Gaojian Lin
Temple University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gaojian Lin.
Advanced Materials | 2015
Yichao Tang; Gaojian Lin; Lin Han; Songgang Qiu; Shu Yang; Jie Yin
Applying hierarchical cuts to thin sheets of elastomer generates super-stretchable and reconfigurable metamaterials, exhibiting highly nonlinear stress-strain behaviors and tunable phononic bandgaps. The cut concept fails on brittle thin sheets due to severe stress concentration in the rotating hinges. By engineering the local hinge shapes and global hierarchical structure, cut-based reconfigurable metamaterials with largely enhanced strength are realized.
Advanced Materials | 2017
Yichao Tang; Gaojian Lin; Shu Yang; Yun Kyu Yi; Randall D. Kamien; Jie Yin
Programmable kirigami metamaterials with controllable local tilting orientations on demand through prescribed notches are constructed through a new approach of kiri-kirgami, and their actuation of pore opening via both mechanical stretching and temperature, along with their potential application as skins for energy-saving buildings, is discussed.
ACS Applied Materials & Interfaces | 2017
Gaojian Lin; Prashant Chandrasekaran; Cunjing Lv; Qiuting Zhang; Yichao Tang; Lin Han; Jie Yin
Smart window has immense potential for energy savings in architectural and vehicular applications, while most studies focus on the tunability of a single property of optical transmittance. Here we explore harnessing dynamically tunable hierarchical wrinkles for design of a potential multifunctional smart window with combined structural color and water droplet transport control. The self-similar hierarchical wrinkles with both nanoscale and microscale features are generated on a prestrained poly(dimethylsiloxane) elastomer through sequential strain release and multistep oxygen plasma treatment. We show that the hierarchically wrinkled elastomer displays both opaqueness and iridescent structural color. We find that restretching/releasing the elastomer leads to the reversible and repeatable switch from opaqueness to transparency, arising from the flattening of large wrinkles (micrometer scale), while a nonvanishing structural color occurs due to the nondisappearing small wrinkles (nanoscale). The unique features of combined reversible large wrinkles and irreversible small wrinkles during hierarchical wrinkling are well reproduced by corresponding finite element simulation. The criteria for generating self-similar hierarchical wrinkles is revealed through a simplified theoretical model and validated by experiments. In addition to its tunable optical property, we further show its ability in control of water droplet transport on demand through mechanical stretching and release. We find that an initially pinned water droplet on the tilted hierarchically wrinkled surface starts to slide when the surface is stretched, and becomes pinned again upon strain release. Such a process is reversible and repeatable. The hierarchically wrinkled surface could find broad potential applications not only in multifunctional smart windows with additional features of aesthetics and water collection, but in microfluidics, design of slippery surfaces, and directional water transportation.
ACS Applied Materials & Interfaces | 2017
Gaojian Lin; Dengteng Ge; Yichao Tang; Yu Xia; Gaoxiang Wu; Lin Han; Shu Yang; Jie Yin
Harnessing buckling instability in soft materials offers an effective strategy to achieve multifunctionality. Despite great efforts in controlling the wrinkling behaviors of film-based systems and buckling of periodic structures, the benefits of classical plate buckling in soft materials remain largely unexplored. The challenge lies in the intrinsic indeterminate characteristics of buckling, leading to geometric frustration and random orientations. Here, we report the controllable global order in constrained buckling of arrays of parallel plates made of hydrogels and elastomers on rigid substrates. By introducing patterned cuts on the plates, the randomly phase-shifted buckling in the array of parallel plates transits to a prescribed and ordered buckling with controllable phases. The design principle for cut-directed deterministic buckling in plates is validated by both mechanics model and finite element simulation. By controlling the contacts and interactions between the buckled parallel plates, we demonstrate on-demand reconfigurable electrical and optical pathways, and the potential application in design of mechanical logic gates. By varying the local stimulus within the plates, we demonstrate that microscopic pathways can be written, visualized, erased, and rewritten macroscopically into a completely new one for potential applications such as soft reconfigurable circuits and logic devices.
Soft robotics | 2018
Yichao Tang; Qiuting Zhang; Gaojian Lin; Jie Yin
Climbing soft robots are of tremendous interest in both science and engineering due to their potential applications in intelligent surveillance, inspection, maintenance, and detection under environments away from the ground. The challenge lies in the design of a fast, robust, switchable adhesion actuator to easily attach and detach the vertical surfaces. Here, we propose a new design of pneumatic-actuated bioinspired soft adhesion actuator working both on ground and under water. It is composed of extremely soft bilayer structures with an embedded spiral pneumatic channel resting on top of a base layer with a cavity. Rather than the traditional way of directly pumping air out of the cavity for suction in hard polymer-based adhesion actuator, we inflate air into the top spiral channel to deform into a stable 3D dome shape for achieving negative pressure in the cavity. The characterization of the maximum shear adhesion force of the proposed soft adhesion actuator shows strong and rapid reversible adhesion on multiple types of smooth and semi-smooth surfaces. Based on the switchable adhesion actuator, we design and fabricate a novel load-carrying amphibious climbing soft robot (ACSR) by combining with a soft bending actuator. We demonstrate that it can operate on a wide range of foreign horizontal and vertical surfaces including dry, wet, slippery, smooth, and semi-smooth ones on ground and also under water with certain load-carrying capability. We show that the vertical climbing speed can reach about 286 mm/min (1.6 body length/min) while carrying over 200 g object (over 5 times the weight of ACSR itself) during climbing on ground and under water. This research could largely push the boundaries of soft robot capabilities and multifunctionality in window cleaning and underwater inspection under harsh environment.
ACS Applied Materials & Interfaces | 2017
Qiuting Zhang; Yichao Tang; Maryam Hajfathalian; Chunxu Chen; Kevin T. Turner; Dmitriy A. Dikin; Gaojian Lin; Jie Yin
Design of electronic materials with high stretchability is of great importance for realizing soft and conformal electronics. One strategy of realizing stretchable metals and semiconductors is to exploit the buckling of materials bonded to elastomers. However, the level of stretchability is often limited by the cracking and fragmentation of the materials that occurs when constrained buckling occurs while bonded to the substrate. Here, we exploit a failure mechanism, spontaneous buckling-driven periodic delamination, to achieve high stretchability in metal and silicon films that are deposited on prestrained elastomer substrates. We find that both globally periodic buckle-delaminated pattern and ordered cracking patterns over large areas are observed in the spontaneously buckle-delaminated thin films. The geometry of periodic delaminated buckles and cracking periodicity can be predicted by theoretical models. By patterning the films into ribbons with widths smaller than the predicted cracking periodicity, we demonstrate the design of crack-free and spontaneous delaminated ribbons on highly prestrained elastomer substrates, which provides a high stretchability of about 120% and 400% in Si and Au ribbons, respectively. We find that the high stretchability is mainly attributed to the largely relaxed strain in the ribbons via spontaneous buckling-driven delamination, as made evident by the small maximum tensile strain in both ribbons, which is measured to be over 100 times smaller than that of the substrate prestrain.
Soft Matter | 2018
Qiuting Zhang; Gaojian Lin; Jie Yin
Water droplet transport on fibers is of great importance for achieving high water collection efficiency from fog. Here, we exploit a new droplet sliding mechanism to accelerate the droplet coalescence and collection for highly efficient fog harvesting by coating hydrophilic microfibers with superhydrophobic layers of assembled carbon nanoparticles. We find that during the initial water collection, unlike the pinned droplets having axisymmetric barrel shapes wrapped around uncoated microfibers, the hanging droplets on coated microfibers with non-wrapping clamshell shapes are highly mobile due to their lower contact hysteresis adhesion; these are observed to oscillate, coalesce, and sweep the growing droplets along the horizontally placed microfibers. The driving force for droplet transport is mainly ascribed to the coalescence energy release and fog flow. After introducing small gravity force by tilting coated microfibers with a small angle of 5°, we find that it can effectively drive the oscillating mobile droplets for directional transport by rapidly sweeping the droplets with a much higher frequency. Finally, the water collection rate from fog on uncoated microfibers over a prolonged duration is found to be improved over 2 times after superhydrophobic coating, and it is further enhanced over 5 times after a small tilting angle of 5°.
Advanced Functional Materials | 2015
Younghyun Cho; Su Yeon Lee; Lindsay Ellerthorpe; Gang Feng; Gaojian Lin; Gaoxiang Wu; Jie Yin; Shu Yang
Extreme Mechanics Letters | 2017
Qiuting Zhang; Jonathon Wommer; Connor O’Rourke; Joseph Teitelman; Yichao Tang; Joshua Robison; Gaojian Lin; Jie Yin
Soft Matter | 2018
Gaojian Lin; Qiuting Zhang; Cunjing Lv; Yichao Tang; Jie Yin