Garet P. Lahvis
Oregon Health & Science University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Garet P. Lahvis.
Journal of Biological Chemistry | 2003
Maureen K. Bunger; Susan M. Moran; Edward Glover; Tami L. Thomae; Garet P. Lahvis; Bernice C. Lin; Christopher A. Bradfield
The Ah receptor (AHR) mediates the metabolic adaptation to a number of planar aromatic chemicals. Essential steps in this adaptive mechanism include AHR binding of ligand in the cytosol, translocation of the receptor to the nucleus, dimerization with the Ah receptor nuclear translocator, and binding of this heterodimeric transcription factor to dioxin-responsive elements (DREs) upstream of promoters that regulate the expression of genes involved in xenobiotic metabolism. The AHR is also involved in other aspects of mammalian biology, such as the toxicity of molecules like 2,3,7,8-tetrachlorodibenzo-p-dioxin as well as regulation of normal liver development. In an effort to test whether these additional AHR-mediated processes require a nuclear event, such as DRE binding, we used homologous recombination to generate mice with a mutation in the AHR nuclear localization/DRE binding domain. These Ahr nls mice were found to be resistant to all 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxic responses that we examined, including hepatomegaly, thymic involution, and cleft palate formation. Moreover, aberrations in liver development observed in these mice were identical to that observed in mice harboring a null allele at the Ahr locus. Taken in sum, these data support a model where most, if not all, of AHR-regulated biology requires nuclear localization.
PLOS ONE | 2007
Jules B. Panksepp; Kimberly A. Jochman; Joseph U. Kim; Jamie J. Koy; Ellie D. Wilson; QiLiang Chen; Clarinda R. Wilson; Garet P. Lahvis
Social approach is crucial for establishing relationships among individuals. In rodents, social approach has been studied primarily within the context of behavioral phenomena related to sexual reproduction, such as mating, territory defense and parental care. However, many forms of social interaction occur before the onset of reproductive maturity, which suggests that some processes underlying social approach among juvenile animals are probably distinct from those in adults. We conducted a longitudinal study of social investigation (SI) in mice from two inbred strains to assess the extent to which genetic factors influence the motivation for young mice to approach one another. Early-adolescent C57BL/6J (B6) mice, tested 4–6 days after weaning, investigated former cage mates to a greater degree than BALB/cJ (BALB) mice, irrespective of the sex composition within an interacting pair. This strain difference was not due to variation in maternal care, the phenotypic characteristics of stimulus mice or sensitivity to the length of isolation prior to testing, nor was it attributable to a general difference in appetitive motivation. Ultrasonic vocalization (USV) production was positively correlated with the SI responses of mice from both strains. Interestingly, several USV characteristics segregated with the genetic background of young mice, including a higher average frequency and shorter duration for the USVs emitted by B6 mice. An assessment of conditioned place preference responses indicated that there was a strain-dependent difference in the rewarding nature of social contact. As adolescent mice aged, SI responses gradually became less sensitive to genetic background and more responsive to the particular sex of individuals within an interacting pair. We have thus identified a specific, genetic influence on the motivation of early-adolescent mice to approach one another. Consistent with classical theories of motivation, which propose a functional relationship between behavioral approach and reward, our findings indicate that reward is a proximal mechanism through which genetic factors affect social motivation during early adolescence.
Genes, Brain and Behavior | 2007
Jules B. Panksepp; Garet P. Lahvis
Mammalian social relationships, such as mother–offspring attachments and pair bonds, can directly affect reproductive output. However, conspecifics approach one another in a comparatively broad range of contexts, so conceivably there are motivations for social congregation other than those underlying reproduction, parental care or territoriality. Here, we show that reward mediated by social contact is a fundamental aspect of juvenile mouse sociality. Employing a novel social conditioned place preference (SCPP) procedure, we demonstrate that social proximity is rewarding for juvenile mice from three inbred strains (A/J, C57BL/6J and DBA/2J), while mice from a fourth strain (BALB/cJ) are much less responsive to social contact. Importantly, this strain‐dependent difference was not related to phenotypic variability in exploratory behavior or contextual learning nor influenced by the genetic background associated with maternal care or social conditioning. Furthermore, the SCPP phenotype was expressed early in development (postnatal day 25) and did not require a specific sex composition within the conditioning group. Finally, SCPP responses resulted from an interaction between two specifiable processes: one component of the interaction facilitated approach toward environments that were associated with social salience, whereas a second component mediated avoidance of environmental cues that predicted social isolation. We have thus identified a genetically prescribed process that can attribute value onto conditions predicting a general form of social contact. To our knowledge, this is the first definitive evidence to show that genetic variation can influence a form of social valuation not directly related to a reproductive behavior.
Biochemical Pharmacology | 1998
Garet P. Lahvis; Christopher A. Bradfield
Two independent laboratories have generated Ahr null or knockout mice that share some common characteristics but also have distinct phenotypes. In this Commentary, we will discuss our view of the candidate variables that might account for these differences. More importantly, we hope that this discussion can identify important parameters to be assessed by investigators in the process of characterizing their own modified loci. The variables that we have considered include the possibility that different targeting strategies can result in altered products with unsuspected function or that the targeting event itself can alter the function of neighboring genes. Further, genetic background can have an important influence on phenotype, and differences in genome can be introduced during derivation by the type of embryonic stem cells used and by the random segregation of parental genes in the F2 generation of line propagation. In addition, phenotype may be acutely sensitive to environmental variables, such as pathogen and chemical exposure and stress introduced by crowding and disease. Finally, we discuss approaches to resolving differences between null mice and propose a partial solution, the institution of a repository for detailed information on targeted alleles that may not typically be allowed in todays fast paced scientific publications.
PLOS ONE | 2009
QiLiang Chen; Jules B. Panksepp; Garet P. Lahvis
Empathy, as originally defined, refers to an emotional experience that is shared among individuals. When discomfort or alarm is detected in another, a variety of behavioral responses can follow, including greater levels of nurturing, consolation or increased vigilance towards a threat. Moreover, changes in systemic physiology often accompany the recognition of distressed states in others. Employing a mouse model of cue-conditioned fear, we asked whether exposure to conspecific distress influences how a mouse subsequently responds to environmental cues that predict this distress. We found that mice are responsive to environmental cues that predict social distress, that their heart rate changes when distress vocalizations are emitted from conspecifics, and that genetic background substantially influences the magnitude of these responses. Specifically, during a series of pre-exposure sessions, repeated experiences of object mice that were exposed to a tone-shock (CS-UCS) contingency resulted in heart rate deceleration in subjects from the gregarious C57BL/6J (B6) strain, but not in subjects from the less social BALB/cJ (BALB) strain. Following the pre-exposure sessions, subjects were individually presented with the CS-only for 5 consecutive trials followed by 5 consecutive pairings of the CS with the UCS. Pre-exposure to object distress increased the freezing responses of B6 mice, but not BALB mice, on both the CS-only and the CS-UCS trials. These physiological and behavioral responses of B6 mice to social distress parallel features of human empathy. Our paradigm thus has construct and face validity with contemporary views of empathy, and provides unequivocal evidence for a genetic contribution to the expression of empathic behavior.
Toxicological Sciences | 2008
Maureen K. Bunger; Edward Glover; Susan M. Moran; Jacqueline A. Walisser; Garet P. Lahvis; Erin L. Hsu; Christopher A. Bradfield
The aryl hydrocarbon receptor (AHR) is known for its role in the adaptive and toxic responses to a large number of environmental contaminants, as well as its role in hepatovascular development. The classical AHR pathway involves ligand binding, nuclear translocation, heterodimerization with the AHR nuclear translocator (ARNT), and binding of the heterodimer to dioxin response elements (DREs), thereby modulating the transcription of an array of genes. The AHR has also been implicated in signaling events independent of nuclear localization and DNA binding, and it has been suggested that such pathways may play important roles in the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Here, we report the generation of a mouse model that expresses an AHR protein capable of ligand binding, interactions with chaperone proteins, functional heterodimerization with ARNT, and nuclear translocation, but is unable to bind DREs. Using this model, we provide evidence that DNA binding is required AHR-mediated liver development, as Ahrdbd/dbd mice exhibit a patent ductus venosus, similar to what is seen in Ahr−/− mice. Furthermore, Ahrdbd/dbd mice are resistant to TCDD-induced toxicity for all endpoints tested. These data suggest that DNA binding is necessary for AHR-mediated developmental and toxic signaling.
Neuroscience & Biobehavioral Reviews | 2011
Jules B. Panksepp; Garet P. Lahvis
In the past few years, several experimental studies have suggested that empathy occurs in the social lives of rodents. Thus, rodent behavioral models can now be developed to elucidate the mechanistic substrates of empathy at levels that have heretofore been unavailable. For example, the finding that mice from certain inbred strains express behavioral and physiological responses to conspecific distress, while others do not, underscores that the genetic underpinnings of empathy are specifiable and that they could be harnessed to develop new therapies for human psychosocial impairments. However, the advent of rodent models of empathy is met at the outset with a number of theoretical and semantic problems that are similar to those previously confronted by studies of empathy in humans. The distinct underlying components of empathy must be differentiated from one another and from lay usage of the term. The primary goal of this paper is to review a set of seminal studies that are directly relevant to developing a concept of empathy in rodents. We first consider some of the psychological phenomena that have been associated with empathy, and within this context, we consider the component processes, or endophenotypes of rodent empathy. We then review a series of recent experimental studies that demonstrate the capability of rodents to detect and respond to the affective state of their social partners. We focus primarily on experiments that examine how rodents share affective experiences of fear, but we also highlight how similar types of experimental paradigms can be utilized to evaluate the possibility that rodents share positive affective experiences. Taken together, these studies were inspired by Jaak Panksepps theory that all mammals are capable of felt affective experiences.
Proceedings of the National Academy of Sciences of the United States of America | 2014
James M. Stafford; Benjamin R. Jarrett; Oscar Miranda-Dominguez; Brian D. Mills; Nicholas Cain; Stefan Mihalas; Garet P. Lahvis; K. Matthew Lattal; Suzanne H. Mitchell; Stephen V. David; John D. Fryer; Joel T. Nigg; Damien A. Fair
Significance Noninvasive brain imaging holds great promise for expanding our capabilities of treating human neurologic and psychiatric disorders. However, key limitations exist in human-only studies, and the ability to use animal models would greatly advance our understanding of human brain function. Mice offer sophisticated genetic and molecular methodology, but correlating these data to functional brain imaging in the mouse brain has remained a major hurdle. This study is the first, to our knowledge, to use whole-brain functional imaging to show large-scale functional architecture with structural correlates in the mouse. Perhaps more important is the finding of conservation in brain topology and default network among rodents and primates, thereby clearing the way for a bridge measurement between human and mouse models. Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans.
Genes, Brain and Behavior | 2011
Garet P. Lahvis; Enrico Alleva; Maria Luisa Scattoni
Mental illness can include impaired abilities to express emotions or respond to the emotions of others. Speech provides a mechanism for expressing emotions, by both what words are spoken and by the melody or intonation of speech (prosody). Through the perception of variations in prosody, an individual can detect changes in anothers emotional state. Prosodic features of mouse ultrasonic vocalizations (USVs), indicated by changes in frequency and amplitude, also convey information. Dams retrieve pups that emit separation calls, females approach males emitting solicitous calls, and mice can become fearful of a cue associated with the vocalizations of a distressed conspecific. Because acoustic features of mouse USVs respond to drugs and genetic manipulations that influence reward circuits, USV analysis can be employed to examine how genes influence social motivation, affect regulation, and communication. The purpose of this review is to discuss how genetic and developmental factors influence aspects of the mouse vocal repertoire and how mice respond to the vocalizations of their conspecifics. To generate falsifiable hypotheses about the emotional content of particular calls, this review addresses USV analysis within the framework of affective neuroscience (e.g. measures of motivated behavior such as conditioned place preference tests, brain activity and systemic physiology). Suggested future studies include employment of an expanded array of physiological and statistical approaches to identify the salient acoustic features of mouse vocalizations. We are particularly interested in rearing environments that incorporate sufficient spatial and temporal complexity to familiarize developing mice with a broader array of affective states.
Plastic and Reconstructive Surgery | 2007
Justin H. Piasecki; Karol A. Gutowski; Garet P. Lahvis; Katherine Moreno
Background: Autologous fat is an excellent soft-tissue filler, given its abundance, ease of harvest, and natural appearance. However, graft longevity is unpredictable and is reported in the literature to be between 3 months and 8 years. Methods: A genetically identical, age- and sex-matched mouse experiment was used to develop a model. Inguinal fat pads were subjected to different harvest and preparatory techniques. Primary endpoints—viability and purity—were assessed with the trypan blue viability assay and component counting with a hemocytometer. Results: Viability and purity were highest after excisional harvest versus blunt or needle harvest, presumably secondary to differences in cellular trauma. Saline wash or centrifugation after harvest produced modest but statistically significant improvements in viability and purity. However, if grafts harvested in any fashion were treated with an initial collagenase digestion followed by an idealized centrifugation regimen and a single wash step, viability and purity were consistently 96 percent and 93 percent, respectively. Conclusions: Using an in vitro murine model, the authors have systematically developed a clinically practical model for creating a pure single-cell suspension of viable adipocytes that is reproducible, regardless of tissue harvest method.