Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gareth A. Roberts is active.

Publication


Featured researches published by Gareth A. Roberts.


Nucleic Acids Research | 2009

Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance

Stephen A. McMahon; Gareth A. Roberts; Kenneth A. Johnson; Laurie P. Cooper; Huanting Liu; John H. White; Lester G. Carter; Bansi Sanghvi; Muse Oke; Malcolm D. Walkinshaw; Garry W. Blakely; James H. Naismith; David T. F. Dryden

The ardA gene, found in many prokaryotes including important pathogenic species, allows associated mobile genetic elements to evade the ubiquitous Type I DNA restriction systems and thereby assist the spread of resistance genes in bacterial populations. As such, ardA contributes to a major healthcare problem. We have solved the structure of the ArdA protein from the conjugative transposon Tn916 and find that it has a novel extremely elongated curved cylindrical structure with defined helical grooves. The high density of aspartate and glutamate residues on the surface follow a helical pattern and the whole protein mimics a 42-base pair stretch of B-form DNA making ArdA by far the largest DNA mimic known. Each monomer of this dimeric structure comprises three alpha–beta domains, each with a different fold. These domains have the same fold as previously determined proteins possessing entirely different functions. This DNA mimicry explains how ArdA can bind and inhibit the Type I restriction enzymes and we demonstrate that 6 different ardA from pathogenic bacteria can function in Escherichia coli hosting a range of different Type I restriction systems.


Chemical Communications | 2009

Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme

Aélig Robin; Gareth A. Roberts; Johannes Kisch; Federico Sabbadin; Gideon Grogan; Neil C. Bruce; Nicholas J. Turner; Sabine L. Flitsch

A chimeric oxygenase, in which the P450cam domain was fused to the reductase host domains of a P450RhF from Rhodococcus sp. strain NCIMB 9784 was optimised to allow for a biotransformation at 30 mM substrate in 80% overall yield, with the linker region between P450 and FMN domain proving to be important for the effective biotransformation of (+)-camphor to 5-exo-hydroxycamphor.


Genes & Development | 2012

Structure and operation of the DNA-translocating type I DNA restriction enzymes.

Christopher Kennaway; James Taylor; Chun Feng Song; Wojciech Potrzebowski; William V. Nicholson; John H. White; Anna Swiderska; Angnieszka Obarska-Kosinska; Philip Callow; Laurie P. Cooper; Gareth A. Roberts; Jean-Baptiste Artero; Janusz M. Bujnicki; John Trinick; Geoff Kneale; David T. F. Dryden

Type I DNA restriction/modification (RM) enzymes are molecular machines found in the majority of bacterial species. Their early discovery paved the way for the development of genetic engineering. They control (restrict) the influx of foreign DNA via horizontal gene transfer into the bacterium while maintaining sequence-specific methylation (modification) of host DNA. The endonuclease reaction of these enzymes on unmethylated DNA is preceded by bidirectional translocation of thousands of base pairs of DNA toward the enzyme. We present the structures of two type I RM enzymes, EcoKI and EcoR124I, derived using electron microscopy (EM), small-angle scattering (neutron and X-ray), and detailed molecular modeling. DNA binding triggers a large contraction of the open form of the enzyme to a compact form. The path followed by DNA through the complexes is revealed by using a DNA mimic anti-restriction protein. The structures reveal an evolutionary link between type I RM enzymes and type II RM enzymes.


Journal of Molecular Biology | 2008

The Orf18 Gene Product from Conjugative Transposon Tn916 Is an ArdA Antirestriction Protein that Inhibits Type I DNA Restriction-Modification Systems

Dimitra Serfiotis-Mitsa; Gareth A. Roberts; Laurie P. Cooper; John H. White; Margaret Nutley; Alan Cooper; Garry W. Blakely; David T. F. Dryden

Gene orf18, which is situated within the intercellular transposition region of the conjugative transposon Tn916 from the bacterial pathogen Enterococcus faecalis, encodes a putative ArdA (alleviation of restriction of DNA A) protein. Conjugative transposons are generally resistant to DNA restriction upon transfer to a new host. ArdA from Tn916 may be responsible for the apparent immunity of the transposon to DNA restriction and modification (R/M) systems and for ensuring that the transposon has a broad host range. The orf18 gene was engineered for overexpression in Escherichia coli, and the recombinant ArdA protein was purified to homogeneity. The protein appears to exist as a dimer at nanomolar concentrations but can form larger assemblies at micromolar concentrations. R/M assays revealed that ArdA can efficiently inhibit R/M by all four major classes of Type I R/M enzymes both in vivo and in vitro. These R/M systems are present in over 50% of sequenced prokaryotic genomes. Our results suggest that ArdA can overcome the restriction barrier following conjugation and so helps increase the spread of antibiotic resistance genes by horizontal gene transfer.


Nucleic Acids Research | 2013

Impact of target site distribution for Type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations

Gareth A. Roberts; Patrick J. Houston; John H. White; Kai Chen; Augoustinos S. Stephanou; Laurie P. Cooper; David T. F. Dryden; Jodi A. Lindsay

A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA.


Nucleic Acids Research | 2010

The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro

Dimitra Serfiotis-Mitsa; Andrew P. Herbert; Gareth A. Roberts; Dinesh C. Soares; John H. White; Garry W. Blakely; Dušan Uhrín; David T. F. Dryden

Plasmids, conjugative transposons and phage frequently encode anti-restriction proteins to enhance their chances of entering a new bacterial host that is highly likely to contain a Type I DNA restriction and modification (RM) system. The RM system usually destroys the invading DNA. Some of the anti-restriction proteins are DNA mimics and bind to the RM enzyme to prevent it binding to DNA. In this article, we characterize ArdB anti-restriction proteins and their close homologues, the KlcA proteins from a range of mobile genetic elements; including an ArdB encoded on a pathogenicity island from uropathogenic Escherichia coli and a KlcA from an IncP-1b plasmid, pBP136 isolated from Bordetella pertussis. We show that all the ArdB and KlcA act as anti-restriction proteins and inhibit the four main families of Type I RM systems in vivo, but fail to block the restriction endonuclease activity of the archetypal Type I RM enzyme, EcoKI, in vitro indicating that the action of ArdB is indirect and very different from that of the DNA mimics. We also present the structure determined by NMR spectroscopy of the pBP136 KlcA protein. The structure shows a novel protein fold and it is clearly not a DNA structural mimic.


Biochemical and Biophysical Research Communications | 2009

A mutational analysis of DNA mimicry by ocr, the gene 0.3 antirestriction protein of bacteriophage T7

Augoustinos S. Stephanou; Gareth A. Roberts; Mark R. Tock; Emily Pritchard; Rachel Turkington; Margaret Nutley; Alan Cooper; David T. F. Dryden

The ocr protein of bacteriophage T7 is a structural and electrostatic mimic of approximately 24 base pairs of double-stranded B-form DNA. As such, it inhibits all Type I restriction and modification (R/M) enzymes by blocking their DNA binding grooves and inactivates them. This allows the infection of the bacterial cell by T7 to proceed unhindered by the action of the R/M defence system. We have mutated aspartate and glutamate residues on the surface of ocr to investigate their contribution to the tight binding between the EcoKI Type I R/M enzyme and ocr. Contrary to expectations, all of the single and double site mutations of ocr constructed were active as anti-R/M proteins in vivo and in vitro indicating that the mimicry of DNA by ocr is very resistant to change.


Journal of Molecular Biology | 2009

Dissection of the DNA Mimicry of the Bacteriophage T7 Ocr Protein using Chemical Modification

Augoustinos S. Stephanou; Gareth A. Roberts; Laurie P. Cooper; David J. Clarke; Andrew R. Thomson; C. Logan Mackay; Margaret Nutley; Alan Cooper; David T. F. Dryden

The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modifying the negative charges on the Ocr surface. Our analysis reveals that removal of about 46% of the carboxylate groups per Ocr monomer results in an ∼ 50-fold reduction in binding affinity for a methyltransferase from a model type I restriction/modification system. The reduced affinity between Ocr with this degree of modification and the methyltransferase is comparable with the affinity of DNA for the methyltransferase. Additional modification to remove ∼ 86% of the carboxylate groups further reduces its binding affinity, although the modified Ocr still binds to the methyltransferase via a mechanism attributable to the shape mimicry of a bent DNA molecule. Our results show that the electrostatic mimicry of Ocr increases the binding affinity for its target enzyme by up to ∼ 800-fold.


Nucleic Acids Research | 2012

Exploring the DNA mimicry of the Ocr protein of phage T7

Gareth A. Roberts; Augoustinos S. Stephanou; Nisha Kanwar; Angela Dawson; Laurie P. Cooper; Kai Chen; Margaret Nutley; Alan Cooper; Garry W. Blakely; David T. F. Dryden

DNA mimic proteins have evolved to control DNA-binding proteins by competing with the target DNA for binding to the protein. The Ocr protein of bacteriophage T7 is the most studied DNA mimic and functions to block the DNA-binding groove of Type I DNA restriction/modification enzymes. This binding prevents the enzyme from cleaving invading phage DNA. Each 116 amino acid monomer of the Ocr dimer has an unusual amino acid composition with 34 negatively charged side chains but only 6 positively charged side chains. Extensive mutagenesis of the charges of Ocr revealed a regression of Ocr activity from wild-type activity to partial activity then to variants inactive in antirestriction but deleterious for cell viability and lastly to totally inactive variants with no deleterious effect on cell viability. Throughout the mutagenesis the Ocr mutant proteins retained their folding. Our results show that the extreme bias in charged amino acids is not necessary for antirestriction activity but that less charged variants can affect cell viability by leading to restriction proficient but modification deficient cell phenotypes.


Nucleic Acids Research | 2011

An investigation of the structural requirements for ATP hydrolysis and DNA cleavage by the EcoKI Type I DNA restriction and modification enzyme

Gareth A. Roberts; Laurie P. Cooper; John H. White; Tsueu-Ju Su; Jakob T. Zipprich; Paul Geary; Cowan Kennedy; David T. F. Dryden

Type I DNA restriction/modification systems are oligomeric enzymes capable of switching between a methyltransferase function on hemimethylated host DNA and an endonuclease function on unmethylated foreign DNA. They have long been believed to not turnover as endonucleases with the enzyme becoming inactive after cleavage. Cleavage is preceded and followed by extensive ATP hydrolysis and DNA translocation. A role for dissociation of subunits to allow their reuse has been proposed for the EcoR124I enzyme. The EcoKI enzyme is a stable assembly in the absence of DNA, so recycling was thought impossible. Here, we demonstrate that EcoKI becomes unstable on long unmethylated DNA; reuse of the methyltransferase subunits is possible so that restriction proceeds until the restriction subunits have been depleted. We observed that RecBCD exonuclease halts restriction and does not assist recycling. We examined the DNA structure required to initiate ATP hydrolysis by EcoKI and find that a 21-bp duplex with single-stranded extensions of 12 bases on either side of the target sequence is sufficient to support hydrolysis. Lastly, we discuss whether turnover is an evolutionary requirement for restriction, show that the ATP hydrolysis is not deleterious to the host cell and discuss how foreign DNA occasionally becomes fully methylated by these systems.

Collaboration


Dive into the Gareth A. Roberts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Chen

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Cooper

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge