Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gareth Baynam is active.

Publication


Featured researches published by Gareth Baynam.


Nucleic Acids Research | 2017

The Human Phenotype Ontology in 2017

Sebastian Köhler; Nicole Vasilevsky; Mark Engelstad; Erin Foster; Julie McMurry; Ségolène Aymé; Gareth Baynam; Susan M. Bello; Cornelius F. Boerkoel; Kym M. Boycott; Michael Brudno; Orion J. Buske; Patrick F. Chinnery; Valentina Cipriani; Laureen E. Connell; Hugh Dawkins; Laura E. DeMare; Andrew Devereau; Bert B.A. de Vries; Helen V. Firth; Kathleen Freson; Daniel Greene; Ada Hamosh; Ingo Helbig; Courtney Hum; Johanna A. Jähn; Roger James; Roland Krause; Stanley J. F. Laulederkind; Hanns Lochmüller

Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.


Human Mutation | 2011

Extending the phenotypes associated with DICER1 mutations

William D. Foulkes; Amin Bahubeshi; Nancy Hamel; Barbara Pasini; Sofia Asioli; Gareth Baynam; Catherine S. Choong; Adrian Charles; Richard P. Frieder; Megan K. Dishop; Nicole Graf; Mesiha Ekim; Dorothée Bouron-Dal Soglio; Jocelyne Arseneau; Robert H. Young; Nelly Sabbaghian; Archana Srivastava; Marc Tischkowitz; John R. Priest

DICER1 is crucial for embryogenesis and early development. Forty different heterozygous germline DICER1 mutations have been reported worldwide in 42 probands that developed as children or young adults, pleuropulmonary blastoma (PPB), cystic nephroma (CN), ovarian sex cord‐stromal tumors (especially Sertoli‐Leydig cell tumor [SLCT]), and/or multinodular goiter (MNG). We report DICER1 mutations in seven additional families that manifested uterine cervix embryonal rhabdomyosarcoma (cERMS, four cases) and primitive neuroectodermal tumor (cPNET, one case), Wilms tumor (WT, three cases), pulmonary sequestration (PS, one case), and juvenile intestinal polyp (one case). One carrier developed (age 25 years) a pleomorphic sarcoma of the thigh; another carrier had transposition of great arteries (TGA). These observations show that cERMS, cPNET, WT, PS, and juvenile polyps fall within the spectrum of DICER1‐related diseases. DICER1 appears to be the first gene implicated in the etiology of cERMS, cPNET, and PS. Young adulthood sarcomas and perhaps congenital malformations such as TGA may also be associated. 32:1381–1384, 2011. ©2011 Wiley Periodicals, Inc.


PLOS Genetics | 2014

Modeling 3D Facial Shape from DNA

Peter Claes; Denise K Liberton; Katleen Daniels; Kerri Matthes Rosana; Ellen E. Quillen; Laurel N. Pearson; Brian McEvoy; Marc Bauchet; Arslan A Zaidi; Wei Yao; Hua Tang; Gregory S. Barsh; Devin Absher; David A. Puts; Jorge Rocha; Sandra Beleza; Rinaldo Wellerson Pereira; Gareth Baynam; Paul Suetens; Dirk Vandermeulen; Jennifer K. Wagner; James S. Boster; Mark D. Shriver

Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers.


Molecular Psychiatry | 2016

X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

Hao Hu; Stefan A. Haas; Jamel Chelly; H. Van Esch; Martine Raynaud; A.P.M. de Brouwer; Stefanie Weinert; Guy Froyen; Suzanne Frints; Frédéric Laumonnier; Tomasz Zemojtel; Michael I. Love; Hugues Richard; Anne-Katrin Emde; Melanie Bienek; Corinna Jensen; Melanie Hambrock; Utz Fischer; C. Langnick; M. Feldkamp; Willemijn Wissink-Lindhout; Nicolas Lebrun; Laetitia Castelnau; J. Rucci; R. Montjean; Olivier Dorseuil; Pierre Billuart; Till Stuhlmann; Marie Shaw; Mark Corbett

X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.


Journal of the American College of Cardiology | 2015

Mutations in a TGF-β Ligand, TGFB3, Cause Syndromic Aortic Aneurysms and Dissections

Aida M. Bertoli-Avella; Elisabeth Gillis; Hiroko Morisaki; J.M.A. Verhagen; Bianca M. de Graaf; Gerarda van de Beek; Elena Gallo; Boudewijn P.T. Kruithof; Hanka Venselaar; Loretha Myers; Steven Laga; Alexander J. Doyle; Gretchen Oswald; Gert W A van Cappellen; Itaru Yamanaka; Robert M. van der Helm; Berna Beverloo; Annelies de Klein; Luba M. Pardo; Martin Lammens; Christina Evers; Koenraad Devriendt; Michiel Dumoulein; Janneke Timmermans; Hennie T. Brüggenwirth; Frans W. Verheijen; Inez Rodrigus; Gareth Baynam; Marlies Kempers; Johan Saenen

Background Aneurysms affecting the aorta are a common condition associated with high mortality as a result of aortic dissection or rupture. Investigations of the pathogenic mechanisms involved in syndromic types of thoracic aortic aneurysms, such as Marfan and Loeys-Dietz syndromes, have revealed an important contribution of disturbed transforming growth factor (TGF)-β signaling. Objectives This study sought to discover a novel gene causing syndromic aortic aneurysms in order to unravel the underlying pathogenesis. Methods We combined genome-wide linkage analysis, exome sequencing, and candidate gene Sanger sequencing in a total of 470 index cases with thoracic aortic aneurysms. Extensive cardiological examination, including physical examination, electrocardiography, and transthoracic echocardiography was performed. In adults, imaging of the entire aorta using computed tomography or magnetic resonance imaging was done. Results Here, we report on 43 patients from 11 families with syndromic presentations of aortic aneurysms caused by TGFB3 mutations. We demonstrate that TGFB3 mutations are associated with significant cardiovascular involvement, including thoracic/abdominal aortic aneurysm and dissection, and mitral valve disease. Other systemic features overlap clinically with Loeys-Dietz, Shprintzen-Goldberg, and Marfan syndromes, including cleft palate, bifid uvula, skeletal overgrowth, cervical spine instability and clubfoot deformity. In line with previous observations in aortic wall tissues of patients with mutations in effectors of TGF-β signaling (TGFBR1/2, SMAD3, and TGFB2), we confirm a paradoxical up-regulation of both canonical and noncanonical TGF-β signaling in association with up-regulation of the expression of TGF-β ligands. Conclusions Our findings emphasize the broad clinical variability associated with TGFB3 mutations and highlight the importance of early recognition of the disease because of high cardiovascular risk.


American Journal of Human Genetics | 2015

The human phenotype ontology: semantic unification of common and rare disease

Tudor Groza; Sebastian Köhler; Dawid Moldenhauer; Nicole Vasilevsky; Gareth Baynam; Tomasz Zemojtel; Lynn M. Schriml; Warren A. Kibbe; Paul N. Schofield; Tim Beck; Drashtti Vasant; Anthony J. Brookes; Andreas Zankl; Nicole L. Washington; Christopher J. Mungall; Suzanna E. Lewis; Melissa Haendel; Helen Parkinson; Peter N. Robinson

The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000 rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available.


Blood | 2016

A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders

Ilenia Simeoni; Jonathan Stephens; Fengyuan Hu; Sri V.V. Deevi; Karyn Megy; Tadbir K. Bariana; Claire Lentaigne; Sol Schulman; Suthesh Sivapalaratnam; Minka J.A. Vries; Sarah K. Westbury; Daniel Greene; Sofia Papadia; Marie Christine Alessi; Antony P. Attwood; Matthias Ballmaier; Gareth Baynam; Emilse Bermejo; Marta Bertoli; Paul F. Bray; Loredana Bury; Marco Cattaneo; Peter William Collins; Louise C. Daugherty; Rémi Favier; Deborah L. French; Bruce Furie; Michael Gattens; Manuela Germeshausen; Cedric Ghevaert

Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.


American Journal of Human Genetics | 2017

International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases

Kym M. Boycott; Ana Rath; Jessica X. Chong; Taila Hartley; Fowzan S. Alkuraya; Gareth Baynam; Anthony J. Brookes; Michael Brudno; Angel Carracedo; Johan T. den Dunnen; Stephanie O.M. Dyke; Xavier Estivill; Jack Goldblatt; Catherine Gonthier; Stephen C. Groft; Ivo Gut; Ada Hamosh; Philip Hieter; Sophie Höhn; Petra Kaufmann; Bartha Maria Knoppers; Jeffrey P. Krischer; Milan Macek; Gert Matthijs; Annie Olry; Samantha Parker; Justin Paschall; Anthony A. Philippakis; Heidi L. Rehm; Peter N. Robinson

Provision of a molecularly confirmed diagnosis in a timely manner for children and adults with rare genetic diseases shortens their “diagnostic odyssey,” improves disease management, and fosters genetic counseling with respect to recurrence risks while assuring reproductive choices. In a general clinical genetics setting, the current diagnostic rate is approximately 50%, but for those who do not receive a molecular diagnosis after the initial genetics evaluation, that rate is much lower. Diagnostic success for these more challenging affected individuals depends to a large extent on progress in the discovery of genes associated with, and mechanisms underlying, rare diseases. Thus, continued research is required for moving toward a more complete catalog of disease-related genes and variants. The International Rare Diseases Research Consortium (IRDiRC) was established in 2011 to bring together researchers and organizations invested in rare disease research to develop a means of achieving molecular diagnosis for all rare diseases. Here, we review the current and future bottlenecks to gene discovery and suggest strategies for enabling progress in this regard. Each successful discovery will define potential diagnostic, preventive, and therapeutic opportunities for the corresponding rare disease, enabling precision medicine for this patient population.


Journal of Anatomy | 2012

Sexual dimorphism in multiple aspects of 3D facial symmetry and asymmetry defined by spatially dense geometric morphometrics.

Peter Claes; Mark Walters; Mark D. Shriver; David A. Puts; Greg Gibson; John G. Clement; Gareth Baynam; Geert Verbeke; Dirk Vandermeulen; Paul Suetens

Accurate measurement of facial sexual dimorphism is useful to understanding facial anatomy and specifically how faces influence, and have been influenced by, sexual selection. An important facial aspect is the display of bilateral symmetry, invoking the need to investigate aspects of symmetry and asymmetry separately when examining facial shape. Previous studies typically employed landmarks that provided only a sparse facial representation, where different landmark choices could lead to contrasting outcomes. Furthermore, sexual dimorphism is only tested as a difference of sample means, which is statistically the same as a difference in population location only. Within the framework of geometric morphometrics, we partition facial shape, represented in a spatially dense way, into patterns of symmetry and asymmetry, following a two‐factor anova design. Subsequently, we investigate sexual dimorphism in symmetry and asymmetry patterns separately, and on multiple aspects, by examining (i) population location differences as well as differences in population variance‐covariance; (ii) scale; and (iii) orientation. One important challenge in this approach is the proportionally high number of variables to observations necessitating the implementation of permutational and computationally feasible statistics. In a sample of gender‐matched young adults (18–25 years) with self‐reported European ancestry, we found greater variation in male faces than in women for all measurements. Statistically significant sexual dimorphism was found for the aspect of location in both symmetry and asymmetry (directional asymmetry), for the aspect of scale only in asymmetry (magnitude of fluctuating asymmetry) and, in contrast, for the aspect of orientation only in symmetry. Interesting interplays with hypotheses in evolutionary and developmental biology were observed, such as the selective nature of the force underpinning sexual dimorphism and the genetic independence of the structural patterns of fluctuating asymmetry. Additionally, insights into growth patterns of the soft tissue envelope of the face and underlying skull structure can also be obtained from the results.


Journal of Inherited Metabolic Disease | 2015

Monitoring of Therapy for Mucopolysaccharidosis Type I Using Dysmorphometric Facial Phenotypic Signatures.

Stefanie Kung; Mark Walters; Peter Claes; Peter N. LeSouëf; Jack Goldblatt; Andrew C. R. Martin; Shanti Balasubramaniam; Gareth Baynam

There is a pattern of progressive facial dysmorphology in mucopolysaccharidosis type I (MPS I). Advances in 3D facial imaging have facilitated the development of tools, including dysmorphometrics, to objectively and precisely detect these facial phenotypes. Therefore, we investigated the application of dysmorphometrics as a noninvasive therapy-monitoring tool, by longitudinally scoring facial dysmorphology in a child with MPS I receiving enzyme replacement therapy (ERT) and bone marrow transplantation (BMT). Both dysmorphometric measures showed a decreasing trend, and the greatest differences were found in the severity of facial discordance (Z-RMSE), displaying scores >3 SD higher than the mean at their peak, in comparison to Z-RSD scores that mostly fell within the normative range (maximum; 1.5 SD from the mean). In addition to the general trend of reduced facial dysmorphology with treatment, initial fluctuations were also evident that may have related to transient subcutaneous facial fluctuations, in the context of conditioning for bone marrow transplant. These findings support the potential of our approach as a sensitive, noninvasive, and rapid means of assessing treatment response or failure in clinical trials, and for established therapies, and would be applicable for other inherited disorders of metabolism.

Collaboration


Dive into the Gareth Baynam's collaboration.

Top Co-Authors

Avatar

Hugh Dawkins

Government of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Jack Goldblatt

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tarun Weeramanthri

Government of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Peter Claes

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Caron Molster

Government of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Mark Walters

Princess Margaret Hospital for Children

View shared research outputs
Top Co-Authors

Avatar

Lyn Schofield

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Kym M. Boycott

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge