Gareth C. Murphy
Dublin Institute for Advanced Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gareth C. Murphy.
Astronomy and Astrophysics | 2010
Gareth C. Murphy; Jonathan Ferreira; C. Zanni
Aims. Cold steady-state disk wind theory from near Keplerian accretion disks requires a large scale magnetic field at near equipartition strength. However the minimum magnetization has never been tested with time dependent simulations. We investigate the time evolution of a Shakura-Sunyaev accretion disk threaded by a weak vertical magnetic field. The strength of the field is such that the disk magnetization falls off rapidly with radius. Methods. Four 2.5D numerical simulations of viscous resistive accretion disk are performed using the magnetohydrodynamic code PLUTO. In these simulations, a mean field approach is used and turbulence is assumed to give rise to anomalous transport coefficients (alpha prescription). Results. The large scale magnetic field introduces only a small perturbation to the disk structure, with accretion driven by the dominant viscous torque. However, a super fast magnetosonic jet is observed to be launched from the innermost regions and remains stationary over more than 953 Keplerian orbits. This is the longest accretion-ejection simulation ever carried out. The self-confined jet is launched from a finite radial zone in the disk which remains constant over time. Ejection is made possible because the magnetization reaches unity at the disk surface, due to the steep density decrease. However, no ejection is reported when the midplane magnetization becomes too small. The asymptotic jet velocity remains nevertheless too low to explain observed jets. This is because of the negligible power carried away by the jet. Conclusions. Astrophysical disks with superheated surface layers could drive analogous outflows even if their midplane magnetization is low. Sufficient angular momentum would be extracted by the turbulent viscosity to allow the accretion process to continue. The magnetized outflows would be no more than byproducts, rather than a fundamental driver of accretion. However, if the midplane magnetization increases towards the center, a natural transition to an inner jet dominated disk could be achieved.
Astronomy and Astrophysics | 2005
Dirk Froebrich; T. P. Ray; Gareth C. Murphy; Alexander Scholz
We present three 14 400 square degree relative extinction maps of the Galactic Plane (|b| < 20°) obtained from 2MASS using accumulative star counts (Wolf diagrams). This method is independent of the colour of the stars and the variation of extinction with wavelength. Stars were counted in 3.5 × 3.5 boxes, every 20.1° × 1° surrounding fields were chosen for reference, hence the maps represent local extinction enhancements and ignore any contribution from the ISM or very large clouds. Data reduction was performed on a Beowulf-type cluster (in approximately 120 hours). Such a cluster is ideal for this type of work as areas of the sky can be independently processed in parallel. We studied how extinction depends on wavelength in all of the high extinction regions detected and within selected dark clouds. On average a power law opacity index (β) of 1.0 to 1.8 in the NIR was deduced. The index however differed significantly from region to region and even within individual dark clouds. That said, generally it was found to be constant, or to increase, with wavelength within a particular region.
Astronomy and Astrophysics | 2005
Dirk Froebrich; Alexander Scholz; J. Eislöffel; Gareth C. Murphy
We present a large-scale study of the IC 1396 region using new deep NIR and optical images, complemented by 2MASS data. For ten globules in IC 1396 we determine (H-K, J-H) colour-colour diagrams and identify the young stellar population. Five of these globules contain a rich population of reddened objects, most of them probably young stellar objects. Two new HH objects (HH 865 and HH 864) could be identified by means of [SII] emission, one of them a parsec-scale flow. Using star counts based on 2MASS data we create an extinction map of the whole region. This map is used to identify 25 globules and to estimate their mass. The globule masses show a significant increase with the distance from the exciting O6.5V star HD 206267. We explain this correlation by the enhanced radiation pressure close to this star, leading to evaporation of the nearby clouds and hence smaller globule masses. We see evidence that the radiation from HD 206267 has a major impact on the star formation activity in these globules. All Appendices are only available in electronic form at http://www.edpsciences.org
Astronomy and Astrophysics | 2008
Gareth C. Murphy; Thibaut Lery; Stephen O'Sullivan; Daniel S. Spicer; Francesca Bacciotti; Alex Rosen
Aims. We investigate potential models that could explain why multiple proto-stellar systems predominantly show single jets. During their formation, stars most frequently produce energetic outflows and jets. However, binary jets have only been observed in a very small number of systems. Methods. We model numerically 3D binary jets for various outflow parameters. We also model the propagation of jets from a specific source, namely L1551 IRS 5, known to have two jets, using recent observations as constraints for simulations with a new MHD code. We examine their morphology and dynamics, and produce synthetic emission maps. Results. We find that the two jets interfere up to the stage where one of them is almost destroyed or engulfed into the second one. We are able to reproduce some of the observational features of L1551 such as the bending of the secondary jet. Conclusions. While the effects of orbital motion are negligible over the jets dynamical timeline, their interaction has significant impact on their morphology. If the jets are not strictly parallel, as in most observed cases, we show that the magnetic field can help the collimation and refocusing of both of the two jets.
New Journal of Physics | 2011
Gianluca Sarri; Gareth C. Murphy; Mark E Dieckmann; Antoine Bret; K. Quinn; Ioannis Kourakis; M. Borghesi; Luke O'c. Drury; Anders Ynnerman
The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a ...
Astronomy and Astrophysics | 2010
Mark E Dieckmann; Gareth C. Murphy; Athina Meli; Luke O'c. Drury
Context. Plasma processes close to supernova remnant shocks result in the amplification of magnetic fields and in the acceleration of electrons, injecting them into the diffusive acceleration mechanism. Aims. The acceleration of electrons and the magnetic field amplification by the collision of two plasma clouds, each consisting of electrons and ions, at a speed of 0.5c is investigated. A quasi-parallel guiding magnetic field, a cloud density ratio of 10 and a plasma temperature of 25 keV are considered. Methods. A relativistic and electromagnetic particle-in-cell simulation models the plasma in two spatial dimensions employing an ion-to-electron mass ratio of 400. Results. A quasi-planar shock forms at the front of the dense plasma cloud. It is mediated by a circularly left-hand polarized electromagnetic wave with an electric field component along the guiding magnetic field. Its propagation direction is close to that of the guiding field and orthogonal to the collision boundary. It has a frequency too low to be determined during the simulation time and a wavelength that equals several times the ion inertial length. These properties would be indicative of a dispersive Alfven wave close to the ion cyclotron resonance frequency of the left-handed mode, known as the ion whistler, provided that the frequency is appropriate. However, it moves with the super-alfvenic plasma collision speed, suggesting that it is an Alfven precursor or a nonlinear MHD wave such as a Short Large-Amplitude Magnetic Structure (SLAMS). The growth of the magnetic amplitude of this wave to values well in excess of those of the quasi-parallel guiding field and of the filamentation modes results in a quasi-perpendicular shock. We present evidence for the instability of this mode to a four wave interaction. The waves developing upstream of the dense cloud give rise to electron acceleration ahead of the collision boundary. Energy equipartition between the ions and the electrons is established at the shock and the electrons are accelerated to relativistic speeds. Conclusions. The magnetic fields in the foreshock of supernova remnant shocks can be amplified substantially and electrons can be injected into the diffusive acceleration, if strongly magnetised plasma subshells are present in the foreshock, with velocities an order of magnitude faster than the main shell.
Astronomy and Astrophysics | 2010
Gareth C. Murphy; Mark E Dieckmann; Antoine Bret; Luke O'c. Drury
Context. The prompt emissions of gamma-ray bursts (GRBs) are seeded by radiating ultrarelativistic electrons. Kinetic energy dominated internal shocks propagating through a jet launched by a stella ...
Physics of Plasmas | 2010
Gareth C. Murphy; Mark Eric Dieckmann; Loc Drury
A 2D particle simulation models the collision of two electron-ion plasma clouds along a quasi-parallel magnetic field. The collision speed is 0.9c and the density ratio 10. A current sheet forms at the front of the dense cloud, in which the electrons and the magnetic field reach energy equipartition with the ions. A structure composed of a solenoidal and a toroidal magnetic field grows in this sheet. It resembles that in the cross-section of the torus of a force-free spheromak, which may provide the coherent magnetic fields in gamma-ray burst (GRB) jets needed for their prompt emissions.A two-dimensional particle simulation models the collision of two electron-ion plasma clouds along a quasiparallel magnetic field. The collision speed is 0.9c and the density ratio, 10. A current sheet forms at the front of the dense cloud, in which the electrons and the magnetic field reach energy equipartition with the ions. A structure composed of a solenoidal and a toroidal magnetic field grows in this sheet. It resembles the cross-section of the torus of a spheromak, which may provide the coherent magnetic fields in gamma-ray burst jets needed for their prompt emissions.
New Journal of Physics | 2012
Mark E Dieckmann; Gianluca Sarri; Gareth C. Murphy; Antoine Bret; L. Romagnani; Ioannis Kourakis; M. Borghesi; Anders Ynnerman; L. O'c. Drury
The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.
IEEE Transactions on Plasma Science | 2010
Gareth C. Murphy; Mark E Dieckmann; L. O'c. Drury
The energetic electromagnetic eruptions observed during the prompt phase of gamma-ray bursts are attributed to synchrotron emissions. The internal shocks moving through the ultrarelativistic jet, which is ejected by an imploding supermassive star, are the likely source of this radiation. Synchrotron emissions at the observed strength require the simultaneous presence of powerful magnetic fields and highly relativistic electrons. We explore with 1-D and 3-D relativistic particle-in-cell simulations the transition layer of a shock, which evolves out of the collision of two plasma clouds at a speed 0.9c and in the presence of a quasi-parallel magnetic field. The cloud densities vary by a factor of 10. The number densities of ions and electrons in each cloud, which have the mass ratio 250, are equal. The peak Lorentz factor of the electrons is determined in the 1-D simulation, as well as the orientation and the strength of the magnetic field at the boundary of the two colliding clouds. The relativistic masses of the electrons and ions close to the shock transition layer are comparable as in previous work. The 3-D simulation shows rapid and strong plasma filamentation behind the transient precursor. The magnetic field component orthogonal to the initial field direction is amplified in both simulations to values that exceed those expected from the shock compression by over an order of magnitude. The forming shock is quasi-perpendicular due to this amplification. The simultaneous presence of highly relativistic electrons and strong magnetic fields will give rise to significant synchrotron emissions.