Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gareth D. H. Turner is active.

Publication


Featured researches published by Gareth D. H. Turner.


American Journal of Pathology | 1999

A Quantitative Analysis of the Microvascular Sequestration of Malaria Parasites in the Human Brain

Kamolrat Silamut; Nguyen Hoan Phu; Christopher J. M. Whitty; Gareth D. H. Turner; Karina Louwrier; Nguyen Thi Hoang Mai; Julie A. Simpson; Tran Tinh Hien; Nicholas J. White

Microvascular sequestration was assessed in the brains of 50 Thai and Vietnamese patients who died from severe malaria (Plasmodium falciparum, 49; P. vivax, 1). Malaria parasites were sequestered in 46 cases; in 3 intravascular malaria pigment but no parasites were evident; and in the P. vivax case there was no sequestration. Cerebrovascular endothelial expression of the putative cytoadherence receptors ICAM-1, VCAM-1, E-selectin, and chondroitin sulfate and also HLA class II was increased. The median (range) ratio of cerebral to peripheral blood parasitemia was 40 (1.8 to 1500). Within the same brain different vessels had discrete but different populations of parasites, indicating that the adhesion characteristics of cerebrovascular endothelium change asynchronously during malaria and also that significant recirculation of parasitized erythrocytes following sequestration is unlikely. The median (range) ratio of schizonts to trophozoites (0.15:1; 0.0 to 11.7) was significantly lower than predicted from the parasite life cycle (P < 0.001). Antimalarial treatment arrests development at the trophozoite stages which remain sequestered in the brain. There were significantly more ring form parasites (age < 26 hours) in the cerebral microvasculature (median range: 19%; 0-90%) than expected from free mixing of these cells in the systemic circulation (median range ring parasitemia: 1.8%; 0-36.2%). All developmental stages of P. falciparum are sequestered in the brain in severe malaria.


Blood | 2011

The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

Pierre Buffet; Innocent Safeukui; Guillaume Deplaine; Valentine Brousse; Virginie Prendki; Marc Thellier; Gareth D. H. Turner; Odile Mercereau-Puijalon

Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum-altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC-spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated.


The Journal of Infectious Diseases | 1999

Cytokine Expression in the Brain in Human Cerebral Malaria

Heidi Brown; Gareth D. H. Turner; Stephen J. Rogerson; Madalitso Tembo; James Mwenechanya; Malcolm E. Molyneux; Terrie E. Taylor

Evidence from clinical studies and murine models supports a role for cytokines in the pathogenesis of human cerebral malaria (CM). In this study, reverse transcriptase-polymerase chain reaction (RT-PCR) was used to investigate expression of mRNA for transforming growth factor (TGF)-beta, interleukin (IL)-1beta, and tumor necrosis factor (TNF)-alpha in human postmortem tissue. Immunohistochemistry was used to examine the distribution of cytokine protein. TGF-beta was expressed in normal brain, in CM, and in meningitis and encephalitis. IL-1beta was absent from normal brain but was detected in CM and other cerebral infections. TNF-alpha mRNA was expressed only in CM, although TNF-alpha protein was also seen in meningitis. Cytokine mRNA expression in the brain did not correlate with the density of parasitized erythrocytes detected using RT-PCR for major surface protein-2. This report of RT-PCR on postmortem human tissues infected with CM demonstrates induction of the proinflammatory cytokines TNF-alpha and IL-1beta in the brain.


PLOS Pathogens | 2012

The Role of Animal Models for Research on Severe Malaria

Alister Craig; Georges E. Grau; Chris J. Janse; James W. Kazura; Danny A. Milner; John W. Barnwell; Gareth D. H. Turner; Jean Langhorne

In light of the recent controversies over the role of animal models for research into the development of new treatments for severe malaria, particularly cerebral disease, a group of scientists came together to discuss the relative merits of a range of animal models and their overlap with the complex clinical syndromes of human disease. While it was not possible to fully resolve differences over the utility of the Plasmodium berghei ANKA model of experimental cerebral malaria, the meeting did bring the two research communities closer together to identify further work to provide information needed to validate the model and revitalise the development of other animal models displaying features of human pathology. The driving force behind this was the desire to ensure better translation of experimental findings into effective treatments for severe malaria.


Trends in Parasitology | 2010

The murine cerebral malaria phenomenon

Nicholas J. White; Gareth D. H. Turner; Isabelle M. Medana; Arjen M. Dondorp; Nicholas P. J. Day

P.berghei ANKA infection in CBA or CB57BL/6 mice is used widely as a murine ‘model’ of human cerebral malaria (HCM), despite markedly different histopathological features. The pathology of the murine model is characterised by marked inflammation with little or no intracerebral sequestration of parasitised erythrocytes, whereas HCM is associated with intense intracerebral sequestration, often with little inflammatory response. There are now more than ten times as many studies each year of the murine model than on HCM. Of 48 adjunctive interventions evaluated in the murine model, 44 (92%) were successful, compared with only 1 (6%) of 17 evaluated in HCM during the same period. The value of the mouse model in identifying pathological processes or therapeutic interventions in human cerebral malaria is questionable.


Cancer Research | 2010

Type 1 Insulin-like Growth Factor Receptor Translocates to the Nucleus of Human Tumor Cells

Tamara Aleksic; Meenali M. Chitnis; Olga V. Perestenko; Shan Gao; Peter H. Thomas; Gareth D. H. Turner; Andrew Protheroe; Mark Howarth; Valentine M. Macaulay

The type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane glycoprotein composed of two extracellular alpha subunits and two beta subunits with tyrosine kinase activity. The IGF-1R is frequently upregulated in cancers and signals from the cell surface to promote proliferation and cell survival. Recent attention has focused on the IGF-1R as a target for cancer treatment. Here, we report that the nuclei of human tumor cells contain IGF-1R, detectable using multiple antibodies to alpha- and beta-subunit domains. Cell-surface IGF-1R translocates to the nucleus following clathrin-mediated endocytosis, regulated by IGF levels. The IGF-1R is unusual among transmembrane receptors that undergo nuclear import, in that both alpha and beta subunits traffic to the nucleus. Nuclear IGF-1R is phosphorylated in response to ligand and undergoes IGF-induced interaction with chromatin, suggesting direct engagement in transcriptional regulation. The IGF dependence of these phenomena indicates a requirement for the receptor kinase, and indeed, IGF-1R nuclear import and chromatin binding can be blocked by a novel IGF-1R kinase inhibitor. Nuclear IGF-1R is detectable in primary renal cancer cells, formalin-fixed tumors, preinvasive lesions in the breast, and nonmalignant tissues characterized by a high proliferation rate. In clear cell renal cancer, nuclear IGF-1R is associated with adverse prognosis. Our findings suggest that IGF-1R nuclear import has biological significance, may contribute directly to IGF-1R function, and may influence the efficacy of IGF-1R inhibitory drugs.


Journal of Immunology | 2003

Host response to malaria during pregnancy: Placental monocyte recruitment is associated with elevated beta chemokine expression

Elizabeth T. Abrams; Heidi Brown; Stephen W. Chensue; Gareth D. H. Turner; Eyob Tadesse; Valentino M. Lema; Malcolm E. Molyneux; Rosemary Rochford; Steven R. Meshnick; Stephen J. Rogerson

Malaria during pregnancy is associated with poor birth outcomes, particularly low birth weight. Recently, monocyte infiltration into the placental intervillous space has been identified as a key risk factor for low birth weight. However, the malaria-induced chemokines involved in recruiting and activating placental monocytes have not been identified. In this study, we determined which chemokines are elevated during placental malaria infection and the association between chemokine expression and placental monocyte infiltration. Placental malaria infection was associated with elevations in mRNA expression of three β chemokines, macrophage-inflammatory protein 1 (MIP-1) α (CCL3), monocyte chemoattractant protein 1 (MCP-1; CCL2), and I-309 (CCL1), and one α chemokine, IL-8 (CXCL8); all correlated with monocyte density in the placental intervillous space. Placental plasma concentrations of MIP-1α and IL-8 were increased in women with placental malaria and were associated with placental monocyte infiltration. By immunohistochemistry, we localized placental chemokine production in malaria-infected placentas: some but not all hemozoin-laden maternal macrophages produced MIP-1β and MCP-1, and fetal stromal cells produced MCP-1. In sum, local placental production of chemokines is increased in malaria, and may be an important trigger for monocyte accumulation in the placenta.


The Journal of Pathology | 2011

Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status

Chiara Bardella; Mona El-Bahrawy; Norma Frizzell; Julie Adam; Nicola Ternette; Emine Hatipoglu; Kimberley Howarth; Linda O'Flaherty; Ian S. Roberts; Gareth D. H. Turner; Jennifer M. Taylor; Konstantinos Giaslakiotis; Valentine M. Macaulay; Adrian L. Harris; Ashish Chandra; Heli J. Lehtonen; Virpi Launonen; Lauri A. Aaltonen; Christopher W. Pugh; Radu Mihai; David C. Trudgian; Benedikt M. Kessler; John W. Baynes; Peter J. Ratcliffe; Ian Tomlinson; Patrick J. Pollard

Germline mutations in the FH gene encoding the Krebs cycle enzyme fumarate hydratase predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. FH‐deficient cells and tissues accumulate high levels of fumarate, which may act as an oncometabolite and contribute to tumourigenesis. A recently proposed role for fumarate in the covalent modification of cysteine residues to S‐(2‐succinyl) cysteine (2SC) (termed protein succination) prompted us to assess 2SC levels in our existing models of HLRCC. Herein, using a previously characterized antibody against 2SC, we show that genetic ablation of FH causes high levels of protein succination. We next hypothesized that immunohistochemistry for 2SC would serve as a metabolic biomarker for the in situ detection of FH‐deficient tissues. Robust detection of 2SC was observed in Fh1 (murine FH)‐deficient renal cysts and in a retrospective series of HLRCC tumours (n = 16) with established FH mutations. Importantly, 2SC was undetectable in normal tissues (n = 200) and tumour types not associated with HLRCC (n = 1342). In a prospective evaluation of cases referred for genetic testing for HLRCC, the presence of 2SC‐modified proteins (2SCP) correctly predicted genetic alterations in FH in every case. In two series of unselected type II papillary renal cancer (PRCC), prospectively analysed by 2SCP staining followed by genetic analysis, the biomarker accurately identified previously unsuspected FH mutations (2/33 and 1/36). The investigation of whether metabolites in other tumour types produce protein modification signature(s) that can be assayed using similar strategies will be of interest in future studies of cancer. Copyright


American Journal of Pathology | 2002

Axonal Injury in Cerebral Malaria

Isabelle M. Medana; Nicholas P. J. Day; Tran Tinh Hien; Nguyen Thi Hoang Mai; Delia Bethell; Nguyen Hoan Phu; Jeremy Farrar; Margaret M. Esiri; Nicholas J. White; Gareth D. H. Turner

Impairment of consciousness and other signs of cerebral dysfunction are common complications of severe Plasmodium falciparum malaria. Although the majority of patients make a complete recovery a significant minority, particularly children, have sequelae. The pathological process by which P. falciparum malaria induces severe but usually reversible neurological complications has not been elucidated. Impairment of transport within nerve fibers could induce neurological dysfunction and may have the potential either to resolve or to progress to irreversible damage. Beta-amyloid precursor protein (beta-APP) immunocytochemistry, quantified using digital image analysis, was used to detect defects in axonal transport in brain sections from 54 Vietnamese cases with P. falciparum malaria. The frequency and extent of beta-APP staining were more severe in patients with cerebral malaria than in those with no clinical cerebral involvement. Beta-APP staining was often associated with hemorrhages and areas of demyelination, suggesting that multiple processes may be involved in neuronal injury. The age of focal axonal damage, as determined by the extent of the associated microglial response, varied considerably within tissue sections from individual patients. These findings suggest that axons are vulnerable to a broad range of cerebral insults that occur during P. falciparum malaria infection. Disruption in axonal transport may represent a final common pathway leading to neurological dysfunction in cerebral malaria.


Trends in Parasitology | 2002

Breaking down the blood-brain barrier: signaling a path to cerebral malaria?

Sue Adams; Heidi Brown; Gareth D. H. Turner

Cerebral malaria is a major killer in the developing world, but we still know very little about the causes of this disease. How does Plasmodium falciparum cause such a devastating neurological disease while it is in the brain vasculature? Why do some patients die, whereas others survive? What processes contribute to disease in the brain, and can we reverse them? Here, the latest evidence from post-mortem, in vitro and animal studies is reviewed to highlight the role of blood-brain barrier breakdown in cerebral malaria. Blood-brain barrier integrity is disturbed during severe malaria, causing leakage of cerebral vessels. Understanding how this happens and how it contributes to the pathogenesis of coma may provide new opportunities for the treatment of cerebral malaria.

Collaboration


Dive into the Gareth D. H. Turner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge