Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gareth D. Weedall is active.

Publication


Featured researches published by Gareth D. Weedall.


Trends in Parasitology | 2010

Detecting signatures of balancing selection to identify targets of anti-parasite immunity

Gareth D. Weedall; David J. Conway

Parasite antigen genes might evolve under frequency-dependent immune selection. The distinctive patterns of polymorphism that result can be detected using population genetic methods that test for signatures of balancing selection, allowing genes encoding important targets of immunity to be identified. Analyses can be complicated by population structures, histories and features of a parasites genome. However, new sequencing technologies facilitate scans of polymorphism throughout parasite genomes to identify the most exceptional gene specific signatures. We focus on malaria parasites to illustrate challenges and opportunities for detecting targets of frequency-dependent immune selection to discover new potential vaccine candidates.


Acta Parasitologica | 2009

The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution

Rodney A. Bray; Andrea Waeschenbach; Thomas H. Cribb; Gareth D. Weedall; Patricia Dyal; D. T. J. Littlewood

The phylogenetic relationships of representative species of the superfamily Lepocreadioidea were assessed using partial lsrDNA and nad1 sequences. Forty-two members of the family Lepocreadiidae, six putative members of the Enenteridae, six gyliauchenid species and one Gorgocephalidae, were studied along with 22 species representing 8 families. The Lepocreadioidea is found to be monophyletic, except for the two species of the putative enenterid genus Cadenatella, which are found to be only distantly related to the lepocreadioids. The Lepocreadioidea is formed of five clades in a polytomy, the Gorgocephalidae, a clade containing the Enenteridae and Gyliauchenidae, a small clade of atypical lepocreadiines and the deep-sea lepidapedine lepocreadiids, a small clade consisting of a freshwater form and a group of shallow-water putative lepidapedines and the final clade includes the remaining lepocreadiids. Thus, the generally accepted concept of the Lepocreadiidae is polyphyletic. The Enenteridae (minus Cadenatella) and the Gyliauchenidae are jointly and individually monophyletic, and are sister groups. The nad1 gene on its own places a deep-sea lepocreadiine with the deep-sea lepidapedines, whereas lsrDNA, combined sequences and morphology place this deep-sea lepocreadiine within a group of typical lepocreadiids. It could not be demonstrated that a significant proportion of sites in the nad1 gene evolved under positive selection; this anomalous relationship therefore remains unexplained. Most deep-sea species are in a monophyletic group, a few of which also occur in shallow waters, retaining some characters of the deep-sea clade. Many lepocreadioid species infect herbivorous fish, and it may be that the recently discovered life-cycle involving a bivalve first intermediate host and metacercariae encysted on vegetation is a common life-cycle pattern. The host relationships show no indication of co-speciation, although the host-spectrums exhibited are not random, with related worms tending to utilize related hosts. There are, however, many exceptions. Morphology is found to be of limited value in indicating higher level relationships. For example, even with the benefit of hindsight the gyliauchenids show little morphological similarity to their sister group, the Enenteridae.


PLOS ONE | 2009

Prospective Identification of Malaria Parasite Genes under Balancing Selection

Kevin K. A. Tetteh; Lindsay B. Stewart; Lynette Isabella Ochola; Alfred Amambua-Ngwa; Alan W. Thomas; Kevin Marsh; Gareth D. Weedall; David J. Conway

Background Endemic human pathogens are subject to strong immune selection, and interrogation of pathogen genome variation for signatures of balancing selection can identify important target antigens. Several major antigen genes in the malaria parasite Plasmodium falciparum have shown such signatures in polymorphism-versus-divergence indices (comparing with the chimpanzee parasite P. reichenowi), and in allele frequency based indices. Methodology/Principal Findings To compare methods for prospective identification of genes under balancing selection, 26 additional genes known or predicted to encode surface-exposed proteins of the invasive blood stage merozoite were first sequenced from a panel of 14 independent P. falciparum cultured lines and P. reichenowi. Six genes at the positive extremes of one or both of the Hudson-Kreitman-Aguade (HKA) and McDonald-Kreitman (MK) indices were identified. Allele frequency based analysis was then performed on a Gambian P. falciparum population sample for these six genes and three others as controls. Tajimas D (TjD) index was most highly positive for the msp3/6-like PF10_0348 (TjD = 1.96) as well as the positive control ama1 antigen gene (TjD = 1.22). Across the genes there was a strong correlation between population TjD values and the relative HKA indices (whether derived from the population or the panel of cultured laboratory isolates), but no correlation with the MK indices. Conclusions/Significance Although few individual parasite genes show significant evidence of balancing selection, analysis of population genomic and comparative sequence data with the HKA and TjD indices should discriminate those that do, and thereby identify likely targets of immunity.


Genome Biology | 2013

The genome and transcriptome of the enteric parasite Entamoeba invadens, a model for encystation

Gretchen M. Ehrenkaufer; Gareth D. Weedall; Daryl R. Williams; Hernan Lorenzi; Elisabet Caler; Neil Hall; Upinder Singh

BackgroundSeveral eukaryotic parasites form cysts that transmit infection. The process is found in diverse organisms such as Toxoplasma, Giardia, and nematodes. In Entamoeba histolytica this process cannot be induced in vitro, making it difficult to study. In Entamoeba invadens, stage conversion can be induced, but its utility as a model system to study developmental biology has been limited by a lack of genomic resources. We carried out genome and transcriptome sequencing of E. invadens to identify molecular processes involved in stage conversion.ResultsWe report the sequencing and assembly of the E. invadens genome and use whole transcriptome sequencing to characterize changes in gene expression during encystation and excystation. The E. invadens genome is larger than that of E. histolytica, apparently largely due to expansion of intergenic regions; overall gene number and the machinery for gene regulation are conserved between the species. Over half the genes are regulated during the switch between morphological forms and a key signaling molecule, phospholipase D, appears to regulate encystation. We provide evidence for the occurrence of meiosis during encystation, suggesting that stage conversion may play a key role in recombination between strains.ConclusionsOur analysis demonstrates that a number of core processes are common to encystation between distantly related parasites, including meiosis, lipid signaling and RNA modification. These data provide a foundation for understanding the developmental cascade in the important human pathogen E. histolytica and highlight conserved processes more widely relevant in enteric pathogens.


Infection and Immunity | 2010

Allelic diversity and naturally acquired allele-specific antibody responses to Plasmodium falciparum apical membrane antigen 1 in Kenya.

Faith Osier; Gareth D. Weedall; Federica Verra; Linda M. Murungi; Kevin K. A. Tetteh; Peter C. Bull; Bart W. Faber; Ed Remarque; Alan W. Thomas; Kevin Marsh; David J. Conway

ABSTRACT Although Plasmodium falciparum apical membrane antigen 1 (AMA1) is a leading malaria vaccine candidate, extensive allelic diversity may compromise its vaccine potential. We have previously shown that naturally acquired antibodies to AMA1 were associated with protection from clinical malaria in this Kenyan population. To assess the impact of allelic diversity on naturally acquired immunity, we first sequenced the ectodomain-encoding region of P. falciparum ama1 from subjects with asymptomatic, mild, and severe malaria and measured allele frequency distributions. We then measured antibodies to three allelic AMA1 proteins (AMA1_3D7, AMA1_FVO, and AMA1_HB3) and used competition enzyme-linked immunosorbent assays (ELISAs) to analyze allele-specific antibodies. Seventy-eight unique haplotypes were identified from 129 alleles sampled. No clustering of allelic haplotypes with disease severity or year of sampling was observed. Differences in nucleotide frequencies in clinical (severe plus mild malaria) versus asymptomatic infections were observed at 16 polymorphic positions. Allele frequency distributions were indicative of balancing selection, with the strongest signature being identified in domain III (Tajimas D = 2.51; P < 0.05). Antibody reactivities to each of the three allelic AMA1 proteins were highly correlated (P < 0.001 for all pairwise comparisons). Although antibodies to conserved epitopes were abundant, 48% of selected children with anti-AMA1 IgG (n = 106) had detectable reactivity to allele-specific epitopes as determined by a competition ELISA. Antibodies to both conserved and allele-specific epitopes in AMA1 may contribute to clinical protection.


Parasite Immunology | 2012

Host–Parasite interactions in Entamoeba histolytica and Entamoeba dispar: what have we learned from their genomes?

I. W. Wilson; Gareth D. Weedall; Neil Hall

Invasive amoebiasis caused by Entamoeba histolytica is a major global health problem. Virulence is a rare outcome of infection, occurring in fewer than 1 in 10 infections. Not all strains of the parasite are equally virulent, and understanding the mechanisms and causes of virulence is an important goal of Entamoeba research. The sequencing of the genome of E. histolytica and the related avirulent species Entamoeba dispar has allowed whole‐genome‐scale analyses of genetic divergence and differential gene expression to be undertaken. These studies have helped elucidate mechanisms of virulence and identified genes differentially expressed in virulent and avirulent parasites. Here, we review the current status of the E. histolytica and E. dispar genomes and the findings of a number of genome‐scale studies comparing parasites of different virulence.


Genome Biology | 2012

Genomic diversity of the human intestinal parasite Entamoeba histolytica

Gareth D. Weedall; C. Graham Clark; Pia Koldkjær; Suzanne Kay; Iris Bruchhaus; Egbert Tannich; Steve Paterson; Neil Hall

BackgroundEntamoeba histolytica is a significant cause of disease worldwide. However, little is known about the genetic diversity of the parasite. We re-sequenced the genomes of ten laboratory cultured lines of the eukaryotic pathogen Entamoeba histolytica in order to develop a picture of genetic diversity across the genome.ResultsThe extreme nucleotide composition bias and repetitiveness of the E. histolytica genome provide a challenge for short-read mapping, yet we were able to define putative single nucleotide polymorphisms in a large portion of the genome. The results suggest a rather low level of single nucleotide diversity, although genes and gene families with putative roles in virulence are among the more polymorphic genes. We did observe large differences in coverage depth among genes, indicating differences in gene copy number between genomes. We found evidence indicating that recombination has occurred in the history of the sequenced genomes, suggesting that E. histolytica may reproduce sexually.ConclusionsE. histolytica displays a relatively low level of nucleotide diversity across its genome. However, large differences in gene family content and gene copy number are seen among the sequenced genomes. The pattern of polymorphism indicates that E. histolytica reproduces sexually, or has done so in the past, which has previously been suggested but not proven.


BMC Microbiology | 2012

A Multilocus Sequence Typing System (MLST) reveals a high level of diversity and a genetic component to Entamoeba histolytica virulence

Carol A. Gilchrist; Ibne Karim M. Ali; Mamun Kabir; Faisal Alam; Sana Scherbakova; Eric Ferlanti; Gareth D. Weedall; Neil Hall; Rashidul Haque; William A. Petri; Elisabet Caler

BackgroundThe outcome of an Entamoeba histolytica infection is variable and can result in either asymptomatic carriage, immediate or latent disease (diarrhea/dysentery/amebic liver abscess). An E. histolytica multilocus genotyping system based on tRNA gene-linked arrays has shown that genetic differences exist among parasites isolated from patients with different symptoms however, the tRNA gene-linked arrays cannot be located in the current assembly of the E. histolytica Reference genome (strain HM-1:IMSS) and are highly variable.ResultsTo probe the population structure of E. histolytica and identify genetic markers associated with clinical outcome we identified in E. histolytica positive samples selected single nucleotide polymorphisms (SNPs) by multiplexed massive parallel sequencing. Profile SNPs were selected which, compared to the reference strain HM-1:IMSS sequence, changed an encoded amino acid at the SNP position, and were present in independent E. histolytica isolates from different geographical origins. The samples used in this study contained DNA isolated from either xenic strains of E. histolytica trophozoites established in culture or E. histolytica positive clinical specimens (stool and amebic liver abscess aspirates). A record of the SNPs present at 16 loci out of the original 21 candidate targets was obtained for 63 of the initial 84 samples (63% of asymptomatically colonized stool samples, 80% of diarrheal stool, 73% of xenic cultures and 84% of amebic liver aspirates). The sequences in all the 63 samples both passed sequence quality control metrics and also had the required greater than 8X sequence coverage for all 16 SNPs in order to confidently identify variants.ConclusionsOur work is in agreement with previous findings of extensive diversity among E. histolytica isolates from the same geographic origin. In phylogenetic trees, only four of the 63 samples were able to group in two sets of two with greater than 50% confidence. Two SNPs in the cylicin-2 gene (EHI_080100/XM_001914351) were associated with disease (asymptomatic/diarrhea p = 0.0162 or dysentery/amebic liver abscess p = 0.0003). This study demonstrated that there are genetic differences between virulent and avirulent E. histolytica strains and that this approach has the potential to define genetic changes that influence infection outcomes.


Parasitology | 2015

Sexual reproduction and genetic exchange in parasitic protists

Gareth D. Weedall; Neil Hall

SUMMARY A key part of the life cycle of an organism is reproduction. For a number of important protist parasites that cause human and animal disease, their sexuality has been a topic of debate for many years. Traditionally, protists were considered to be primitive relatives of the ‘higher’ eukaryotes, which may have diverged prior to the evolution of sex and to reproduce by binary fission. More recent views of eukaryotic evolution suggest that sex, and meiosis, evolved early, possibly in the common ancestor of all eukaryotes. However, detecting sex in these parasites is not straightforward. Recent advances, particularly in genome sequencing technology, have allowed new insights into parasite reproduction. Here, we review the evidence on reproduction in parasitic protists. We discuss protist reproduction in the light of parasitic life cycles and routes of transmission among hosts.


The ISME Journal | 2016

A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus.

Sébastien Wielgoss; Xavier Didelot; Roy R. Chaudhuri; Xuan Liu; Gareth D. Weedall; Gregory J. Velicer; Michiel Vos

The bacterium Myxococcus xanthus glides through soil in search of prey microbes, but when food sources run out, cells cooperatively construct and sporulate within multicellular fruiting bodies. M. xanthus strains isolated from a 16 × 16-cm-scale patch of soil were previously shown to have diversified into many distinct compatibility types that are distinguished by the failure of swarming colonies to merge upon encounter. We sequenced the genomes of 22 isolates from this population belonging to the two most frequently occurring multilocus sequence type (MLST) clades to trace patterns of incipient genomic divergence, specifically related to social divergence. Although homologous recombination occurs frequently within the two MLST clades, we find an almost complete absence of recombination events between them. As the two clades are very closely related and live in sympatry, either ecological or genetic barriers must reduce genetic exchange between them. We find that the rate of change in the accessory genome is greater than the rate of amino-acid substitution in the core genome. We identify a large genomic tract that consistently differs between isolates that do not freely merge and therefore is a candidate region for harbouring gene(s) responsible for self/non-self discrimination.

Collaboration


Dive into the Gareth D. Weedall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Hall

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan W. Thomas

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Charles S. Wondji

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Helen Irving

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge