Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gareth J. Barker is active.

Publication


Featured researches published by Gareth J. Barker.


Neurology | 1999

Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis

David J. Werring; Ca Clark; Gareth J. Barker; Aj Thompson; Dh Miller

Objective: To determine whether diffusion tensor imaging (DTI) can detect structural changes in normal-appearing white matter, and to distinguish between plaques of different pathologic severity, in patients with MS. Background: Conventional MRI detects lesions sensitively in MS but has limited pathologic specificity. The diffusion of water molecules in brain tissue, most fully expressed mathematically by a tensor quantity, reflects its intrinsic microstructure. It is now possible to estimate the diffusion tensor noninvasively in the human brain using MR DTI. This method is unique in providing precise and rotationally invariant measurements of the amount and directional bias (anisotropy) of diffusion in white matter tracts relating to tissue integrity and orientation. Methods: DTI was performed in six patients with MS and in six age-matched control subjects. Diffusion was characterized in normal-appearing white matter in both groups, and in lesions of different pathologic subtypes (inflammatory, noninflammatory, T1 hypointense, and T1 isointense). Results: DTI identified significantly altered water diffusion properties in the normal-appearing white matter of patients compared with control subjects (p < 0.001), and distinguished between lesion types. The highest diffusion was seen in destructive (T1 hypointense) lesions, whereas the greatest change in anisotropy was found in inflammatory (gadolinium-enhancing) lesions. Conclusions: DTI detects diffuse abnormalities in the normal-appearing white matter of MS patients, and the findings in lesions appear to relate to pathologic severity. Its use in serial studies and in larger clinical cohorts may increase our understanding of pathogenetic mechanisms of reversible and persistent disability.


Annals of Neurology | 2004

Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain

Klaus Schmierer; Francesco Scaravilli; Daniel R. Altmann; Gareth J. Barker; David H. Miller

Several quantitative magnetic resonance (MR) measures are used to investigate multiple sclerosis (MS) in vivo. Precise quantitative investigation of the histopathological correlates of such measures has, to date, been limited. This study investigates the relationship of quantitative measures of myelin content, axonal density, and gliosis with quantitative MR measures in postmortem (PM) MS tissue. MR imaging (MRI) was performed on a 1.5T scanner and T1‐relaxation time (T1‐RT) and magnetization transfer ratio (MTR) maps were acquired in fresh PM brain of 20 MS subjects. Myelin content, axonal counts, and the extent of gliosis all were quantified using morphometric and digital imaging techniques. MRI and pathological data were in most cases coregistered using stereotactic navigation. Using multiple regression analysis, we detected significant correlations between myelin content (Trmyelin) and MTR (r = −0.84, p < 0.001) and myelin content and axonal count (−0.80, p < 0.001); MTR correlated with T1‐RT (r = −0.79, p < 0.001). No association was detected between the extent of gliosis and either MR measure. MTR was significantly higher in remyelinated than demyelinated lesions (means: 30.0 [standard deviation, 2.9] vs 23.8 [standard deviation, 4.3], p = 0.008). In conclusion, MTR is affected by myelin content in MS white matter. Ann Neurol 2004


Magnetic Resonance in Medicine | 2002

Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data.

Daniel C. Alexander; Gareth J. Barker; Simon R. Arridge

This work details the observation of non‐Gaussian apparent diffusion coefficient (ADC) profiles in multi‐direction, diffusion‐weighted MR data acquired with easily achievable imaging parameters (b ≈ 1000 s/mm2). A technique is described for modeling the profile of the ADC over the sphere, which can capture non‐Gaussian effects that can occur at, for example, intersections of different tissue types or white matter fiber tracts. When these effects are significant, the common diffusion tensor model is inappropriate, since it is based on the assumption of a simple underlying diffusion process, which can be described by a Gaussian probability density function. A sequence of models of increasing complexity is obtained by truncating the spherical harmonic (SH) expansion of the ADC measurements at several orders. Further, a method is described for selection of the most appropriate of these models, in order to describe the data adequately but without overfitting. The combined procedure is used to classify the profile at each voxel as isotropic, anisotropic Gaussian, or non‐Gaussian, each with reference to the underlying probability density function of displacement of water molecules. We use it to show that non‐Gaussian profiles arise consistently in various regions of the human brain where complex tissue structure is known to exist, and can be observed in data typical of clinical scanners. The performance of the procedure developed is characterized using synthetic data in order to demonstrate that the observed effects are genuine. This characterization validates the use of our method as an indicator of pathology that affects tissue structure, which will tend to reduce the complexity of the selected model. Magn Reson Med 48:331–340, 2002.


American Journal of Psychiatry | 2009

Amygdala Hypoactivity to Fearful Faces in Boys With Conduct Problems and Callous-Unemotional Traits

Alice P. Jones; Kristin R. Laurens; Catherine M. Herba; Gareth J. Barker; Essi Viding

OBJECTIVE Although early-onset conduct problems predict both psychiatric and health problems in adult life, little research has been done to index neural correlates of conduct problems. Emerging research suggests that a subgroup of children with conduct problems and elevated levels of callous-unemotional traits may be genetically vulnerable to manifesting disturbances in neural reactivity to emotional stimuli indexing distress. Using functional MRI, the authors evaluated differences in neural response to emotional stimuli between boys with conduct problems and elevated levels of callous-unemotional traits and comparison boys. METHOD Seventeen boys with conduct problems and elevated levels of callous-unemotional traits and 13 comparison boys of equivalent age (mean=11 years) and IQ (mean=100) viewed blocked presentations of fearful and neutral faces. For each face, participants distinguished the sex of the face via manual response. RESULTS Relative to the comparison group, boys with conduct problems and elevated levels of callous-unemotional traits manifested lesser right amygdala activity to fearful faces. CONCLUSIONS This finding is in line with data from studies of adults with antisocial behavior and callous-unemotional traits (i.e., psychopaths), as well as from a recent study of adolescents with callous-unemotional traits, and suggests that the neural substrates of emotional impairment associated with callous-unemotional antisocial behavior are already present in childhood.


Nature | 2007

PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans.

Rachel L. Batterham; Dominic H. ffytche; J. Miranda Rosenthal; Fernando Zelaya; Gareth J. Barker; Dominic J. Withers; Steven Williams

The ability to maintain adequate nutrient intake is critical for survival. Complex interrelated neuronal circuits have developed in the mammalian brain to regulate many aspects of feeding behaviour, from food-seeking to meal termination. The hypothalamus and brainstem are thought to be the principal homeostatic brain areas responsible for regulating body weight. However, in the current ‘obesogenic’ human environment food intake is largely determined by non-homeostatic factors including cognition, emotion and reward, which are primarily processed in corticolimbic and higher cortical brain regions. Although the pleasure of eating is modulated by satiety and food deprivation increases the reward value of food, there is currently no adequate neurobiological account of this interaction between homeostatic and higher centres in the regulation of food intake in humans. Here we show, using functional magnetic resonance imaging, that peptide YY3–36 (PYY), a physiological gut-derived satiety signal, modulates neural activity within both corticolimbic and higher-cortical areas as well as homeostatic brain regions. Under conditions of high plasma PYY concentrations, mimicking the fed state, changes in neural activity within the caudolateral orbital frontal cortex predict feeding behaviour independently of meal-related sensory experiences. In contrast, in conditions of low levels of PYY, hypothalamic activation predicts food intake. Thus, the presence of a postprandial satiety factor switches food intake regulation from a homeostatic to a hedonic, corticolimbic area. Our studies give insights into the neural networks in humans that respond to a specific satiety signal to regulate food intake. An increased understanding of how such homeostatic and higher brain functions are integrated may pave the way for the development of new treatment strategies for obesity.


NeuroImage | 2006

Hemispheric asymmetries in language-related pathways: A combined functional MRI and tractography study

H. W. Robert Powell; Geoff J.M. Parker; Daniel C. Alexander; Mark R. Symms; Philip A. Boulby; Claudia A.M. Wheeler-Kingshott; Gareth J. Barker; Uta Noppeney; Matthias J. Koepp; John S. Duncan

Functional lateralization is a feature of human brain function, most apparent in the typical left-hemisphere specialization for language. A number of anatomical and imaging studies have examined whether structural asymmetries underlie this functional lateralization. We combined functional MRI (fMRI) and diffusion-weighted imaging (DWI) with tractography to study 10 healthy right-handed subjects. Three language fMRI paradigms were used to define language-related regions in inferior frontal and superior temporal regions. A probabilistic tractography technique was then employed to delineate the connections of these functionally defined regions. We demonstrated consistent connections between Brocas and Wernickes areas along the superior longitudinal fasciculus bilaterally but more extensive fronto-temporal connectivity on the left than the right. Both tract volumes and mean fractional anisotropy (FA) were significantly greater on the left than the right. We also demonstrated a correlation between measures of structure and function, with subjects with more lateralized fMRI activation having a more highly lateralized mean FA of their connections. These structural asymmetries are in keeping with the lateralization of language function and indicate the major structural connections underlying this function.


Biological Psychiatry | 2005

Diffusion tensor imaging in schizophrenia

Richard Kanaan; Jin Suh Kim; Walter E. Kaufmann; Godfrey D. Pearlson; Gareth J. Barker; Philip McGuire

BACKGROUND Diffusion tensor imaging (DTI) is a relatively new neuroimaging technique that can be used to examine the microstructure of white matter in vivo. A systematic review of DTI studies in schizophrenia was undertaken to test the hypothesis that DTI can detect white matter differences between schizophrenia patients and normal control subjects. METHODS EMBASE, PubMed, Medline, and PsychInfo were searched online and key journals were searched manually for studies comparing anisotropy (a measure of white matter integrity) between patients and control subjects. Nineteen articles were systematically reviewed. RESULTS Though 16 studies found differences, methodological and data differences prevented a meta-analysis. Fourteen studies found reduced anisotropy in patients; two studies found only a loss of normal asymmetry. The region of investigation varied across studies, however, and when the same region (for example, the cingulum) was examined in different studies, as many failed to find a difference as found one. These inconsistencies may be the result of small sample sizes and differences in methodology. CONCLUSIONS Diffusion tensor imaging has yet to provide consistent findings of white matter abnormalities in schizophrenia. Its potential as a means of examining anatomical connectivity may be realized with the study of larger, more homogenous groups of subjects and with ongoing improvements in image analysis.


Brain and Cognition | 2006

Study design in fMRI: Basic principles

Edson Amaro; Gareth J. Barker

There is a wide range of functional magnetic resonance imaging (fMRI) study designs available for the neuroscientist who wants to investigate cognition. In this manuscript we review some aspects of fMRI study design, including cognitive comparison strategies (factorial, parametric designs), and stimulus presentation possibilities (block, event-related, rapid event-related, mixed, and self-driven experiment designs) along with technical aspects, such as limitations of signal to noise ratio, spatial, and temporal resolution. We also discuss methods to deal with cases where scanning parameters become the limiting factor (parallel acquisitions, variable jittered designs, scanner acoustic noise strategies).


Journal of Neurology, Neurosurgery, and Psychiatry | 2000

Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke

David J. Werring; Ahmed T. Toosy; Chris A. Clark; Geoffrey J. M. Parker; Gareth J. Barker; David H. Miller; Alan J. Thompson

Diffusion tensor imaging (DTI) fully characterises water molecule mobility in vivo, allowing an exploration of fibre tract integrity and orientation in the human brain. Using DTI this study demonstrates reduced fibre coherence (anisotropy) associated with cerebral infarction and in the corticospinal tract remote from the lesion, in five patients 2 to 6 months after ischaemic stroke. The study highlights the potential of DTI to detect and monitor the structural degeneration of fibre pathways, which may provide a better understanding of the pattern of clinical evolution after stroke.


Neurology | 2001

Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations

O Ciccarelli; David J. Werring; Claudia A.M. Wheeler-Kingshott; Gareth J. Barker; Geoffrey J. M. Parker; Aj Thompson; Dh Miller

Objective: To quantitatively investigate water diffusion changes in normal-appearing white matter (NAWM) and gray matter in patients with MS, and to evaluate whether these changes are correlated with clinical disability and disease duration. Background: Diffusion tensor imaging provides quantitative information about the magnitude and directionality (anisotropy) of water diffusion in vivo and detects pathologic changes in MS brain tissue. Methods: Diffusion tensor imaging was performed in 39 patients with MS and in 21 age-matched control subjects. Quantitative indices, including fractional anisotropy, volume ratio, and mean diffusivity, were obtained in 30 regions of interest located in normal-appearing basal ganglia, cerebellar gray matter, and supratentorial and infratentorial NAWM. Results: Patients with MS showed significantly reduced anisotropy and a trend toward increased diffusivity in the infratentorial and supratentorial NAWM, and significantly increased anisotropy in the basal ganglia. In all patients with MS, both fractional anisotropy and mean diffusivity in the cerebral peduncles were inversely correlated with the Expanded Disability Status Scale and pyramidal functional scores. In patients with relapsing-remitting MS, there was a strong correlation between Expanded Disability Status Scale score and fractional anisotropy in both supratentorial and infratentorial NAWM. In primary and secondary progressive MS, disease duration correlated strongly with mean diffusivity in infratentorial NAWM and fractional anisotropy in the cerebral peduncles, respectively. Conclusion: The most striking finding of decreased fractional anisotropy in supratentorial and infratentorial NAWM and increased fractional anisotropy in basal ganglia may result from axonal degeneration due to fiber transection in remote focal lesions. Diffusion tensor imaging indices, in particular fractional anisotropy, appear sensitive to structural damage in NAWM that is associated with disability and progression in MS.

Collaboration


Dive into the Gareth J. Barker's collaboration.

Top Co-Authors

Avatar

Dh Miller

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aj Thompson

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark R. Symms

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge