Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gareth J. Browne is active.

Publication


Featured researches published by Gareth J. Browne.


Cancer Cell | 2013

A Switch in the Expression of Embryonic EMT-Inducers Drives the Development of Malignant Melanoma

Julie Caramel; Eftychios Papadogeorgakis; Louise Hill; Gareth J. Browne; Geoffrey Richard; Anne Wierinckx; Gerald Saldanha; Joy Osborne; Peter E. Hutchinson; Gina Tse; Joël Lachuer; Alain Puisieux; J. Howard Pringle; Stéphane Ansieau; Eugene Tulchinsky

Aberrant expression of embryonic epithelial-mesenchymal transition-inducing transcription factors (EMT-TFs) in epithelial cells triggers EMT, neoplastic transformation, stemness, and metastatic dissemination. We found that regulation and functions of EMT-TFs are different in malignant melanoma. SNAIL2 and ZEB2 transcription factors are expressed in normal melanocytes and behave as tumor-suppressor proteins by activating an MITF-dependent melanocyte differentiation program. In response to NRAS/BRAF activation, EMT-TF network undergoes a profound reorganization in favor of TWIST1 and ZEB1. This reversible switch cooperates with BRAF in promoting dedifferentiation and neoplastic transformation of melanocytes. We detected EMT-TF reprogramming in late-stage melanoma in association with enhanced phospho-ERK levels. This switch results in E-cadherin loss, enhanced invasion, and constitutes an independent factor of poor prognosis in melanoma patients.


International Journal of Cancer | 2013

ZEB/miR‐200 feedback loop: At the crossroads of signal transduction in cancer

Louise Hill; Gareth J. Browne; Eugene Tulchinsky

Embryonic differentiation programs of epithelial–mesenchymal and mesenchymal–epithelial transition (EMT and MET) represent a mechanistic basis for epithelial cell plasticity implicated in cancer. Transcription factors of the ZEB protein family (ZEB1 and ZEB2) and several microRNA species (predominantly miR‐200 family members) form a double negative feedback loop, which controls EMT and MET programs in both development and tumorigenesis. In this article, we review crosstalk between the ZEB/miR‐200 axis and several signal transduction pathways activated at different stages of tumor development. The close association of ZEB proteins with these pathways is indirect evidence for the involvement of a ZEB/miR‐200 loop in tumor initiation, progression and spread. Additionally, the configuration of signaling pathways involving ZEB/miR‐200 loop suggests that ZEB1 and ZEB2 may have different, possibly even opposing, roles in some forms of human cancer.


Cell Death & Differentiation | 2008

Itch: A HECT-type E3 ligase regulating immunity, skin and cancer

Gerry Melino; Ewen Gallagher; Rami I. Aqeilan; Richard A. Knight; Angelo Peschiaroli; Mario Rossi; Flavia Scialpi; Martina Malatesta; Loredana Zocchi; Gareth J. Browne; Aaron Ciechanover; Francesca Bernassola

The HECT-type E3 ubiquitin ligase (E3) Itch is absent in the non-agouti-lethal 18H or Itchy mice, which develop a severe immunological disease, including lung and stomach inflammation and hyperplasia of lymphoid and hematopoietic cells. The involvement of Itch in multiple signaling pathways and pathological conditions is presently an area of extensive scientific interest. This review aims to bring together a growing body of work exploring Itch-regulated biological processes, and to highlight recent discoveries on the regulatory mechanisms modulating its catalytic activity and substrate recognition capability. Our contribution is also an endeavor to correlate Itch substrate specificity with the pathological defects manifested by the mutant Itchy mice.


PLOS Genetics | 2012

EMT Inducers Catalyze Malignant Transformation of Mammary Epithelial Cells and Drive Tumorigenesis towards Claudin-Low Tumors in Transgenic Mice

Anne-Pierre Morel; George W. Hinkal; Clémence Thomas; Frédérique Fauvet; Stéphanie Courtois-Cox; Anne Wierinckx; Mojgan Devouassoux-Shisheboran; Isabelle Treilleux; Agnès Tissier; Baptiste Gras; Julie Pourchet; Isabelle Puisieux; Gareth J. Browne; Douglas B. Spicer; Joël Lachuer; Stéphane Ansieau; Alain Puisieux

The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT–inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell–like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation.


web science | 2010

ZEB proteins link cell motility with cell cycle control and cell survival in cancer

Gareth J. Browne; A. Emre Sayan; Eugene Tulchinsky

Epithelial mesenchymal transitions (EMT), the generation of motile mesenchymal cells from epithelial sheets, are differentiation programs which take place at several critical steps of embryonic development and in metastatic cancer. Recent data have shown that the transcription factors which are master regulators of EMT also regulate cell cycle progression, apoptosis and senescence. In light of these new observations, the role of these factors in human cancer may be broader than previously anticipated. Here we review recent literature on non-EMT functions of EMT-controlling transcription factors. We will mainly focus on transcription factors belonging to the ZEB family, but some important results obtained by investigators studying other key EMT regulators, Snail and Twist are also discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Differential control of TAp73 and ΔNp73 protein stability by the ring finger ubiquitin ligase PIR2

Berna S. Sayan; Ai Li Yang; Franco Conforti; Paola Tucci; Maria Cristina Piro; Gareth J. Browne; Massimiliano Agostini; Sergio Bernardini; Richard A. Knight; Tak W. Mak; Gerry Melino

p73 is a p53-related transcription factor with fundamental roles in development and tumor suppression. Transcription from two different promoters on the p73 gene results in generation of transcriptionally active TAp73 isoforms and dominant negative ΔNp73 isoforms with opposing pro- and anti-apoptotic functions. Therefore, the relative ratio of each isoform is an important determinant of the cell fate. Proteasomal degradation of p73 is mediated by polyubiquitination-dependent and -independent processes both of which appear, thus far, to lack selectivity for the TAp73 and ΔNp73 isoforms. Here, we describe the characterization of another transcriptional target of TAp73; a ring finger domain ubiquitin ligase p73 Induced RING 2 protein (PIR2). Although PIR2 was initially identified a p53-induced gene (p53RFP), low abundance of PIR2 transcript in mouse embryonic fibroblasts of TAp73 KO mice compared with WT mice and comparison of PIR2 mRNA and protein levels following TAp73 or p53 overexpression substantiate TAp73 isoforms as strong inducers of PIR2. Although PIR2 expression was induced by DNA damage, its expression did not alter apoptotic response or cell cycle profile per se. However, coexpression of PIR2 with TAp73 or ΔNp73 resulted in an increase of the TA/ΔNp73 ratio, due to preferential degradation of ΔNp73. Finally, PIR2 was able to relieve the inhibitory effect of ΔNp73 on TAp73 induced apoptosis following DNA damage. These results suggest that PIR2, by being induced by TAp73 and degrading ΔNp73, differentially regulates TAp73/ΔNp73 stability, and, hence, it may offer a therapeutic approach to enhance the chemosensitivity of tumor cells.


Journal of Cell Science | 2011

Differential altered stability and transcriptional activity of ΔNp63 mutants in distinct ectodermal dysplasias

Gareth J. Browne; Rita Cipollone; Anna Maria Lena; Valeria Serra; Huiqing Zhou; Hans van Bokhoven; Volker Dötsch; Daniele Merico; Roberto Mantovani; Alessandro Terrinoni; Richard A. Knight; Eleonora Candi; Gerry Melino

Heterozygous mutations of p63, a key transcription factor in epithelial development, are causative in a variety of human ectodermal dysplasia disorders. Although the mutation spectrum of these disorders displays a striking genotype–phenotype association, the molecular basis for this association is only superficially known. Here, we characterize the transcriptional activity and protein stability of ΔNp63 mutants (that is, mutants of a p63 isoform that lacks the N-terminal transactivation domain) that are found in ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC), ankyloblepharon–ectodermal dysplasia–clefting syndrome (AEC) and nonsyndromic split-hand/split-foot malformation (SHFM). DNA-binding and sterile alpha motif (SAM) domain mutants accumulate in the skin of EEC and AEC syndrome patients, respectively, and show extended half lives in vitro. By contrast, C-terminal mutations found in SHFM patients have half-lives similar to that of the wild-type protein. The increased half-life of EEC and AEC mutant proteins was reverted by overexpression of wild-type ΔNp63. Interestingly, the mutant proteins exhibit normal binding to and degradation by the E3 ubiquitin ligase Itch. Finally, EEC and AEC mutant proteins have reduced transcriptional activity on several skin-specific gene promoters, whereas SHFM mutant proteins are transcriptionally active. Our results, therefore, provide evidence for a regulatory feedback mechanism for p63 that links transcriptional activity to regulation of protein homeostasis by an unknown mechanism. Disruption of this regulatory mechanism might contribute to the pathology of p63-related developmental disorders.


Biochimica et Biophysica Acta | 2010

Activation of ASK1, downstream MAPKK and MAPK isoforms during cardiac ischaemia

Stephen J. Harding; Gareth J. Browne; Bw Miller; Sally A. Prigent; Martin Dickens

p38 MAPK is activated potently during cardiac ischaemia, although the precise mechanism by which it is activated is unclear. We used the isolated perfused rat heart to investigate the signalling pathways activated upstream of p38 during global cardiac ischaemia. Ischaemia strongly activated p38α but not the JNK pathway. The MAPKKs, MKK3, MKK4 and MKK6 have previously been identified as potential upstream activators of p38; however, in the ischaemic perfused heart, we saw activation of MKK3 and MKK6 but not MKK4. MKK3 and MKK6 showed different temporal patterns of activity, indicating distinct modes of activation and physiological function. Consistent with a lack of JNK activation, we saw no activation of MKK4 or MKK7 at any time point during ischaemia. A lack of MKK4 activation indicates, at least in the ischaemic heart, that MKK4 is not a physiologically relevant activator of p38. The MAPKKK, ASK1, was strongly activated late during ischaemia, with a similar time course to that of MKK6 and in ischaemic neonatal cardiac myocytes ASK1 expression preferentially activated MKK6 rather than MKK3. These observations suggest that during ischaemia ASK1 is coupled to p38 activation primarily via MKK6. Potent activation of ASK1 during ischaemia without JNK activation shows that during cardiac ischaemia, ASK1 preferentially activates the p38 pathway. These results demonstrate a specificity of responses seldom seen in previous studies and illustrate the benefits of using direct assays in intact tissues responding to physiologically relevant stimuli to unravel the complexities of MAPK signalling.


Biochemical and Biophysical Research Communications | 2010

Skn-1a/Oct-11 and ΔNp63α exert antagonizing effects on human keratin expression

Anna Maria Lena; Rita Cipollone; Ivano Amelio; Maria Valeria Catani; Safaa M. Ramadan; Gareth J. Browne; Gerry Melino; Eleonora Candi

The formation of a stratified epidermis requires a carefully controlled balance between keratinocyte proliferation and differentiation. Here, we report the reciprocal effect on keratin expression of ΔNp63, pivotal in normal epidermal morphogenesis and maintenance, and Skn-1a/Oct-11, a POU transcription factor that triggers and regulates the differentiation of keratinocytes. The expression of Skn-1a markedly downregulated ΔNp63-driven K14 expression in luciferase reporter assays. The extent of downregulation was comparable to the inhibition of Skn-1a-mediated K10 expression upon expression of ΔNp63. ΔNp63, mutated in the protein-protein interaction domain (SAM domain; mutated in human ectodermal dysplasia syndrome), was significantly less effecting in downregulating K10, raising the possibility of a direct interaction among Skn-1a and ΔNp63. Immunolocalization in human skin biopsies revealed that the expression of the two transcription factors is partially overlapping. Co-immunoprecipitation experiments did not, however, demonstrate a direct interaction between ΔNp63 and Skn-1a, suggesting that the antagonistic effects of Skn-1a and p63 on keratin promoter transactivation is probably through competition for overlapping binding sites on target gene promoter or through an indirect interaction.


Journal of Receptors and Signal Transduction | 2011

Reversible translocation of ASK1 to a Triton-X100 insoluble cytoplasmic compartment during cardiac myocyte cell stress

Gareth J. Browne; Martin Dickens

ASK1 is a cellular stress-responsive MAPKKK which activates the JNK and p38 MAPK pathways that play a key role in the response of cardiac myocytes to redox stress following ischemia/reperfusion. ASK1 becomes incorporated into high-molecular weight complexes upon activation but this has not been investigated in cardiac myocytes. Here we examine the distribution of ASK1 in neonatal rat cardiomyocytes undergoing simulated ischemia and reperfusion. Simulated ischemia or redox stress in neonatal cardiac myocytes causes the translocation of ASK1 to distinct punctate cytoplasmic structures that are insoluble in Triton X-100. The translocation event is not dependent on ASK1 kinase activity, occurs subsequent to activation and is reversible upon removal of the cell stress. The structures to which ASK1 translocates in cardiac myocytes do not appear to correspond to the previously described ASK1 signalosome reported in other cell types.

Collaboration


Dive into the Gareth J. Browne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerry Melino

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Louise Hill

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Maria Lena

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Rita Cipollone

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

A. Emre Sayan

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge