Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gareth J. S. Jenkins is active.

Publication


Featured researches published by Gareth J. S. Jenkins.


Biomaterials | 2009

NanoGenotoxicology : The DNA damaging potential of engineered nanomaterials

Neenu Singh; Bella Manshian; Gareth J. S. Jenkins; Sioned M. Griffiths; Paul M. Williams; Thierry G.G. Maffeis; Chris J. Wright; Shareen H. Doak

With the rapid expansion in the nanotechnology industry, it is essential that the safety of engineered nanomaterials and the factors that influence their associated hazards are understood. A vital area governing regulatory health risk assessment is genotoxicology (the study of genetic aberrations following exposure to test agents), as DNA damage may initiate and promote carcinogenesis, or impact fertility. Of late, considerable attention has been given to the toxicity of engineered nanomaterials, but the importance of their genotoxic potential on human health has been largely overlooked. This comprehensive review focuses on the reported abilities of metal nanoparticles, metal-oxide nanoparticles, quantum dots, fullerenes, and fibrous nanomaterials, to damage or interact with DNA, and their ecogenotoxicity is also considered. Many of the engineered nanomaterials assessed were found to cause genotoxic responses, such as chromosomal fragmentation, DNA strand breakages, point mutations, oxidative DNA adducts and alterations in gene expression profiles. However, there are clear inconsistencies in the literature and it is difficult to draw conclusions on the physico-chemical features of nanomaterials that promote genotoxicity, largely due to study design. Hence, areas that require that further attention are highlighted and recommendations to improve our understanding of the genotoxic potential of engineered nanomaterials are addressed.


Nano Reviews | 2010

Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)

Neenu Singh; Gareth J. S. Jenkins; Romisa Asadi; Shareen H. Doak

Superparamagnetic iron oxide nanoparticles (SPION) are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.


Cancer Research | 2007

Mechanistic Influences for Mutation Induction Curves after Exposure to DNA-Reactive Carcinogens

Shareen H. Doak; Gareth J. S. Jenkins; George E. Johnson; Emma Quick; Elizabeth M. Parry; James M. Parry

A mechanistic understanding of carcinogenic genotoxicity is necessary to determine consequences of chemical exposure on human populations and improve health risk assessments. Currently, linear dose-responses are assumed for DNA reactive compounds, ignoring cytoprotective processes that may limit permanent damage. To investigate the biological significance of low-dose exposures, human lymphoblastoid cells were treated with alkylating agents that have different mechanisms of action and DNA targets: methylmethane sulfonate (MMS), methylnitrosourea (MNU), ethylmethane sulfonate (EMS), and ethylnitrosourea (ENU). Chromosomal damage and point mutations were quantified with the micronucleus and hypoxanthine phosphoribosyltransferase forward mutation assays. MNU and ENU showed linear dose-responses, whereas MMS and EMS had nonlinear curves containing a range of nonmutagenic low doses. The lowest observed effect level for induction of chromosomal aberrations was 0.85 microg/mL MMS and 1.40 microg/mL EMS; point mutations required 1.25 microg/mL MMS and 1.40 microg/mL EMS before a mutagenic effect was detected. This nonlinearity could be due to homeostatic maintenance by DNA repair, which is efficient at low doses of compounds that primarily alkylate N(7)-G and rarely attack O atoms. A pragmatic threshold for carcinogenicity may therefore exist for such genotoxins.


Mutagenesis | 2009

Confounding experimental considerations in nanogenotoxicology

Shareen H. Doak; Sioned M. Griffiths; Bella Manshian; Neenu Singh; Paul M. Williams; Andy Brown; Gareth J. S. Jenkins

The development of novel nanomaterials with unique physico-chemical properties is increasing at a rapid rate, with potential applications across a broad range of manufacturing industries and consumer products. Nanomaterial safety is therefore becoming an increasingly contentious issue that has intensified over the past 4 years, and in response, a steady stream of studies focusing on nanotoxicology are emerging. However, it is becoming increasingly evident that nanomaterials cannot be treated in the same manner as chemical compounds with regards to their safety assessment, as their unique physico-chemical properties are also responsible for unexpected interactions with experimental components that generate misleading data-sets. In this report, we focus on nanomaterial interactions with colorimetric and fluorometric dyes, components of cell culture growth medium and genotoxicity assay components, and the resultant consequences on test systems are demonstrated. Thus, highlighting some of the potential confounding factors that need to be considered in order to ensure that in vitro genotoxicity assays report true biological impacts in response to nanomaterial exposure.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2012

In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines

Shareen H. Doak; Bella Manshian; Gareth J. S. Jenkins; Neenu Singh

Highlights ► We consider current in vitro OECD genotoxicity tests for nanomaterials. ► Ames test does not appear to be suitable for nanomaterial assessment. ► In vitro HPRT and micronucleus assays require nanomaterial specific protocols. ► We recommend a strategic in vitro genotoxicity testing strategy for nanomaterials.


Biomaterials | 2012

The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles.

Neenu Singh; Gareth J. S. Jenkins; Bryant C. Nelson; Bryce J. Marquis; Thierry G.G. Maffeis; Andy Brown; Paul M. Williams; Chris J. Wright; Shareen H. Doak

Ultrafine superparamagnetic iron oxide nanoparticles (USPION) hold great potential for revolutionising biomedical applications such as MRI, localised hyperthermia, and targeted drug delivery. Though evidence is increasing regarding the influence of nanoparticle physico-chemical features on toxicity, data however, is lacking that assesses a range of such characteristics in parallel. We show that iron redox state, a subtle though important physico-chemical feature of USPION, dramatically modifies the cellular uptake of these nanoparticles and influences their induction of DNA damage. Surface chemistry was also found to have an impact and evidence to support a potential mechanism of oxidative DNA damage behind the observed responses has been demonstrated. As human exposure to ferrofluids is predicted to increase through nanomedicine based therapeutics, these findings are important in guiding the fabrication of USPION to ensure they have characteristics that support biocompatibility.


Analytical Chemistry | 2012

Mass Amplifying Probe for Sensitive Fluorescence Anisotropy Detection of Small Molecules in Complex Biological Samples

Liang Cui; Yuan Zou; Ninghang Lin; Zhi Zhu; Gareth J. S. Jenkins; Chaoyong James Yang

Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective detection of small molecules by means of FA in complex biological samples.


Gut | 2003

Chromosome 4 hyperploidy represents an early genetic aberration in premalignant Barrett’s oesophagus

Shareen H. Doak; Gareth J. S. Jenkins; Elizabeth M. Parry; F R D’Souza; A P Griffiths; N Toffazal; V Shah; John N. Baxter; James M. Parry

Background and aims: Characterisation of the underlying molecular mechanisms that promote Barrett’s progression may ultimately lead to identification of potential predictive genetic markers that classify patients’ malignant risk. In an attempt to understand these causative pathways, fluorescence in situ hybridisation (FISH) was used in this study to determine when specific genetic alterations arise during Barrett’s associated neoplastic progression. Methods: Endoscopic cytology brushings were obtained from 28 patients with Barrett’s metaplasia, 28 with dysplasia (20 low grade dysplasia (LGD) and eight with high grade dysplasia (HGD)), and seven with adenocarcinoma, together with paired control brushings from regions of normal proximal squamous cell epithelium. The exfoliated epithelial cells were washed and deposited onto slides. Probes specific for the centromeres of chromosomes 4, 8, 20, and Y, and locus specific probes for the tumour suppressor genes p16, p53, and Rb were subsequently hybridised. Results: Aneuploidy was found early in progression, with metaplastic tissues displaying increased copy numbers of chromosomes 4 and 8. Chromosome 4 hyperploidy was found in 89%, 90%, 88%, and 100% of metaplasias, LGD, HGD, adenocarcinomas, respectively, while chromosome 8 hyperploidy occurred in 71%, 75%, 100%, and 100% of patients with the respective staging. Loss of the p16 tumour suppressor gene also presented in metaplastic epithelium (7%) but most other genetic aberrations were only seen in HGD. Conclusions: Genetic instability arises well before dysplasia in Barrett’s oesophagus, with chromosome 4 and 8 hyperploidy representing the earliest and most common alterations identified. As these aberrations are widespread at all the premalignant stages, there may be genes on chromosomes 4 and 8 that are involved in both the initiation and progression of Barrett’s oesophagus.


The American Journal of Gastroenterology | 2011

Epidermal Growth Factor Receptor (EGFR) Is Overexpressed in High-Grade Dysplasia and Adenocarcinoma of the Esophagus and May Represent a Biomarker of Histological Progression in Barrett's Esophagus (BE)

James G. Cronin; Elizabeth McAdam; Antonios Danikas; Chris Tselepis; Paul Griffiths; John N. Baxter; Linzi Thomas; James Manson; Gareth J. S. Jenkins

OBJECTIVES:The assessment of cancer risk in patients with Barretts esophagus (BE) is currently fraught with difficulty. The current gold standard method of assessing cancer risk is histological assessment, with the appearance of high-grade dysplasia (HGD) as the key event monitored. Sampling error during endoscopy limits the usefulness of this approach, and there has been much recent interest in supplementing histological assessment with molecular markers, which may aid in patient stratification.METHODS:No molecular marker has been yet validated to accurately correlate with esophageal histological progression. Here, we assessed the suitability of several membranous proteins as biomarkers by correlating their abundance with histological progression. In all, 107 patient samples, from 100 patients, were arranged on a tissue microarray (TMA) and represented the various stages of histological progression in BE. This TMA was probed with antibodies for eight receptor proteins (mostly membranous).RESULTS:Epidermal growth factor receptor (EGFR) staining was found to be the most promising biomarker identified with clear increases in staining accompanying histological progression. Further, immunohistochemistry was performed using the full-tissue sections from BE, HGD, and adenocarcinoma tissues, which confirmed the stepwise increase in EGFR abundance. Using a robust H-score analysis, EGFR abundance was shown to increase 13-fold in the adenocarcinoma tissues compared to the BE tissues. EGFR was “overexpressed” in 35% of HGD specimens and 80% of adenocarcinoma specimens when using the H-score of the BE patients (plus 3 s.d.) as the threshold to define overexpression. EGFR staining was also noted to be higher in BE tissues adjacent to HGD/adenocarcinoma. Western blotting, although showing more EGFR protein in the adenocarcinomas compared to the BE tissue, was highly variable. EGFR overexpression was accompanied by aneuploidy (gain) of chromosome 7, plus amplification of the EGFR locus. Finally, the bile acid deoxycholic acid (DCA) (at neutral and acidic pH) and acid alone was capable of upregulating EGFR mRNA in vitro, and in the case of neutral pH DCA, this was NF-κB dependent.CONCLUSIONS:EGFR is overexpressed during the histological progression in BE tissues and hence may be useful as a biomarker of histological progression. Furthermore, as EGFR is a membranous protein expressed on the luminal surface of the esophageal mucosa, it may also be a useful target for biopsy guidance during endoscopy.


Mutagenesis | 2008

The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-κB activation in oesophageal cells, with a mechanism of action involving ROS

Gareth J. S. Jenkins; J. Cronin; A. Alhamdani; N. Rawat; F. D'Souza; T. Thomas; Z. Eltahir; A P Griffiths; John N. Baxter

Deoxycholic acid (DCA) is a secondary bile acid implicated in various cancers of the gastrointestinal (GI) tract. In oesophageal adenocarcinoma, DCA is believed to contribute to carcinogenesis during reflux where stomach contents enter the lower oesophagus. It is imperative that we understand the mechanisms whereby oesophageal carcinogens function in order that therapeutic options may be developed. We have previously shown that DCA can damage chromosomes and does so through its generation of reactive oxygen species (ROS). We show here, after detailed experiments, that DCA appears to have a non-linear dose response for DNA damage. DCA induces DNA damage (as measured by the micronucleus assay) at doses of 100 microM and higher in oesophageal OE33 cells, but fails to induce such DNA damage below this cut-off dose. We also show that in terms of NF-kappaB activation (as measured by up-regulation of two NF-kappaB target genes) by DCA, a similar dose response is observed. This dose-response data may be important clinically as DCA exposure to the oesophagus may be used as a way to identify the 10% of Barretts oesophagus patients currently progressing to cancer from the 90% of patients who do not progress. Only quantitative studies measuring DCA concentrations in refluxates correlated with histological progression will answer this question. We further show here that ROS are behind DCAs ability to activate NF-kappaB as antioxidants (epigallocatechin gallate, resveratrol and vitamin C) abrogate DCAs ability to up-regulate NF-kappaB-controlled genes. In conclusion, low doses of DCA appear to be less biologically significant in vitro. If this were to be confirmed in vivo, it might suggest that reflux patients with low DCA concentrations may be at a lower risk of cancer progression compared to patients with high levels of DCA in their refluxate. Either way, antioxidant supplementation may possibly help prevent the deleterious effects of DCA in the whole GI tract.

Collaboration


Dive into the Gareth J. S. Jenkins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bella Manshian

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge