Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gargi D. Basu is active.

Publication


Featured researches published by Gargi D. Basu.


Annals of Surgical Oncology | 2004

Reduced T-Cell and Dendritic Cell Function Is Related to Cyclooxygenase-2 Overexpression and Prostaglandin E2 Secretion in Patients With Breast Cancer

Barbara A. Pockaj; Gargi D. Basu; Latha B. Pathangey; Richard J. Gray; Jose L. Hernandez; Sandra J. Gendler

Background: In several neoplastic diseases, including breast cancer, immunosuppression correlates with disease stage, progression, and outcome. Thus, thorough analysis of immune parameters in breast cancer patients may be beneficial in designing effective anticancer immune-based therapies.Methods: We investigated dendritic cell and T-cell function in breast cancer patients at various stages of the disease and in age-matched controls. We also evaluated cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) levels within the tumor milieu and in the circulation.Results: T cells from cancer patients showed decreased proliferation in response to CD3 antibody stimulation. Analysis of T-cell helper type 1 and 2 cytokines revealed reduced levels of interferon-γ, tumor necrosis factor-α, interleukin (IL)-12, and IL-2 and increased levels of IL-10 and IL-4. Dendritic cells from these patients showed significantly reduced expression of co-stimulatory molecules (B7 and CD40) and demonstrated reduced phagocytic ability, reduced antigen presentation to T cells, and reduced ability to mature in response to lipopolysaccharide. Data revealed increased synthesis of PGE2, an immune suppressor, along with increased expression of COX-2, a key regulator of PGE2 synthesis.Conclusions: COX-2–induced PGE2 may contribute to immunosuppression and may directly block antitumor immunity while promoting tumor growth, providing us with the rationale for using COX-2 inhibition combined with immunotherapy.


Breast Cancer Research | 2005

Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

Gargi D. Basu; Latha B. Pathangey; Teresa L. Tinder; Sandra J. Gendler

IntroductionInhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines.MethodsMDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model.ResultsThe highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and increased necrosis in the tumor mass.ConclusionThe disparate molecular mechanisms of celecoxib-induced growth inhibition in human breast cancer cells depends upon the level of COX-2 expression and the invasive potential of the cell lines examined. Data suggest a role for COX-2 not only in the growth of cancer cells but also in activating the angiogenic pathway through regulating levels of vascular endothelial growth factor.


Journal of Immunology | 2006

Cyclooxygenase-2 Inhibitor Enhances the Efficacy of a Breast Cancer Vaccine: Role of IDO

Gargi D. Basu; Teresa L. Tinder; Judy M. Bradley; Tony Tu; Christine L. Hattrup; Barbara A. Pockaj

We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.


Journal of Translational Medicine | 2009

Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer

David O. Azorsa; Irma M. Gonzales; Gargi D. Basu; Ashish Choudhary; Shilpi Arora; Kristen M. Bisanz; Jeffrey Kiefer; Meredith C. Henderson; Jeffrey M. Trent; Daniel D. Von Hoff; Spyro Mousses

BackgroundPancreatic cancer retains a poor prognosis among the gastrointestinal cancers. It affects 230,000 individuals worldwide, has a very high mortality rate, and remains one of the most challenging malignancies to treat successfully. Treatment with gemcitabine, the most widely used chemotherapeutic against pancreatic cancer, is not curative and resistance may occur. Combinations of gemcitabine with other chemotherapeutic drugs or biological agents have resulted in limited improvement.MethodsIn order to improve gemcitabine response in pancreatic cancer cells, we utilized a synthetic lethal RNAi screen targeting 572 known kinases to identify genes that when silenced would sensitize pancreatic cancer cells to gemcitabine.ResultsResults from the RNAi screens identified several genes that, when silenced, potentiated the growth inhibitory effects of gemcitabine in pancreatic cancer cells. The greatest potentiation was shown by siRNA targeting checkpoint kinase 1 (CHK1). Validation of the screening results was performed in MIA PaCa-2 and BxPC3 pancreatic cancer cells by examining the dose response of gemcitabine treatment in the presence of either CHK1 or CHK2 siRNA. These results showed a three to ten-fold decrease in the EC50 for CHK1 siRNA-treated cells versus control siRNA-treated cells while treatment with CHK2 siRNA resulted in no change compared to controls. CHK1 was further targeted with specific small molecule inhibitors SB 218078 and PD 407824 in combination with gemcitabine. Results showed that treatment of MIA PaCa-2 cells with either of the CHK1 inhibitors SB 218078 or PD 407824 led to sensitization of the pancreatic cancer cells to gemcitabine.ConclusionThese findings demonstrate the effectiveness of synthetic lethal RNAi screening as a tool for identifying sensitizing targets to chemotherapeutic agents. These results also indicate that CHK1 could serve as a putative therapeutic target for sensitizing pancreatic cancer cells to gemcitabine.


Journal of Immunology | 2009

Progression of Pancreatic Adenocarcinoma Is Significantly Impeded with a Combination of Vaccine and COX-2 Inhibition

Pinku Mukherjee; Gargi D. Basu; Teresa L. Tinder; Durai B. Subramani; Judy M. Bradley; Million Arefayene; Todd C. Skaar; Giovanni De Petris

With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRASG12D mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E2 and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer.


Breast Cancer Research | 2006

A novel role for cyclooxygenase-2 in regulating vascular channel formation by human breast cancer cells

Gargi D. Basu; Winnie S. Liang; Dietrich A. Stephan; Lee T. Wegener; Christopher R. Conley; Barbara A. Pockaj; Pinku Mukherjee

IntroductionCyclo-oxygenase (COX)-2 expression correlates directly with highly aggressive and metastatic breast cancer, but the mechanism underlying this correlation remains obscure. We hypothesized that invasive human breast cancer cells that over-express COX-2 have the unique ability to differentiate into extracellular-matrix-rich vascular channels, also known as vasculogenic mimicry. Vascular channels have been associated with angiogenesis without involvement of endothelial cells, and may serve as another mechanism by which tumor cells obtain nutrients to survive, especially in less vascularized regions of the tumor.MethodsTo determine whether COX-2 regulates vascular channel formation, we assessed whether treatment with celecoxib (a selective COX-2 inhibitor) or silencing COX-2 synthesis by siRNA inhibits vascular channel formation by breast cancer cell lines. Cell lines were selected based on their invasive potential and COX-2 expression. Additionally, gene expression analysis was performed to identify candidate genes involved in COX-2-induced vascular channel formation. Finally, vascular channels were analyzed in surgically resected human breast cancer specimens that expressed varying levels of COX-2.ResultsWe found that invasive human breast cancer cells that over-express COX-2 develop vascular channels when plated on three-dimensional matigel cultures, whereas non-invasive cell lines that express low levels of COX-2 did not develop such channels. Similarly, we identified vascular channels in high-grade invasive ductal carcinoma of the breast over-expressing COX-2, but not in low-grade breast tumors. Vascular channel formation was significantly suppressed when cells were treated with celecoxib or COX-2 siRNA. Inhibition of channel formation was abrogated by addition of exogenous prostaglandin E2. In vitro results were corroborated in vivo in tumor-bearing mice treated with celecoxib. Using gene expression profiling, we identified several genes in the angiogenic and survival pathways that are engaged in vascular channel formation.ConclusionAntivascular therapies targeting tumor cell vasculogenic mimicry may be an effective approach to the treatment of patients with highly metastatic breast cancer.


Journal of Immunology | 2008

MUC1 Enhances Tumor Progression and Contributes Toward Immunosuppression in a Mouse Model of Spontaneous Pancreatic Adenocarcinoma

Teresa L. Tinder; Durai B. Subramani; Gargi D. Basu; Judy M. Bradley; Jorge Schettini; Arefayene Million; Todd C. Skaar

MUC1, a membrane tethered mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic adenocarcinoma. However, the role of MUC1 in pancreatic cancer has been elusive, partly due to the lack of an appropriate model. We report the characterization of a novel mouse model that expresses human MUC1 as a self molecule (PDA.MUC1 mice). Pancreatic tumors arise in an appropriate MUC1-tolerant background within an immune-competent host. Significant enhancement in the development of pancreatic intraepithelial preneoplastic lesions and progression to adenocarcinoma is observed in PDA.MUC1 mice, possibly due to increased proliferation. Tumors from PDA.MUC1 mice express higher levels of cyclooxygenase-2 and IDO compared with PDA mice lacking MUC1, especially during early stages of tumor development. The increased proinflammatory milieu correlates with an increased percentage of regulatory T cells and myeloid suppressor cells in the pancreatic tumor and tumor draining lymph nodes. Data shows that during pancreatic cancer progression, MUC1-mediated mechanisms enhance the onset and progression of the disease, which in turn regulate the immune responses. Thus, the mouse model is ideally suited for testing novel chemopreventive and therapeutic strategies against pancreatic cancer.


Blood | 2010

Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6

Rodger Tiedemann; Yuan Xiao Zhu; Jessica Schmidt; Hongwei Yin; Chang Xin Shi; Qiang Que; Gargi D. Basu; David O. Azorsa; Louise M. Perkins; Esteban Braggio; Rafael Fonseca; P. Leif Bergsagel; Spyro Mousses; A. Keith Stewart

A paucity of validated kinase targets in human multiple myeloma has delayed clinical deployment of kinase inhibitors in treatment strategies. We therefore conducted a kinome-wide small interfering RNA (siRNA) lethality study in myeloma tumor lines bearing common t(4;14), t(14;16), and t(11;14) translocations to identify critically vulnerable kinases in myeloma tumor cells without regard to preconceived mechanistic notions. Fifteen kinases were repeatedly vulnerable in myeloma cells, including AKT1, AK3L1, AURKA, AURKB, CDC2L1, CDK5R2, FES, FLT4, GAK, GRK6, HK1, PKN1, PLK1, SMG1, and TNK2. Whereas several kinases (PLK1, HK1) were equally vulnerable in epithelial cells, others and particularly G protein-coupled receptor kinase, GRK6, appeared selectively vulnerable in myeloma. GRK6 inhibition was lethal to 6 of 7 myeloma tumor lines but was tolerated in 7 of 7 human cell lines. GRK6 exhibits lymphoid-restricted expression, and from coimmunoprecipitation studies we demonstrate that expression in myeloma cells is regulated via direct association with the heat shock protein 90 (HSP90) chaperone. GRK6 silencing causes suppression of signal transducer and activator of transcription 3 (STAT3) phosphorylation associated with reduction in MCL1 levels and phosphorylation, illustrating a potent mechanism for the cytotoxicity of GRK6 inhibition in multiple myeloma (MM) tumor cells. As mice that lack GRK6 are healthy, inhibition of GRK6 represents a uniquely targeted novel therapeutic strategy in human multiple myeloma.


Cancer Research | 2007

Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification

Riina Kuuselo; Kimmo Savinainen; David O. Azorsa; Gargi D. Basu; Ritva Karhu; Sukru Tuzmen; Spyro Mousses; Anne Kallioniemi

Pancreatic cancer is a highly aggressive disease characterized by poor prognosis and vast genetic instability. Recent microarray-based, genome-wide surveys have identified multiple recurrent copy number aberrations in pancreatic cancer; however, the target genes are, for the most part, unknown. Here, we characterized the 19q13 amplicon in pancreatic cancer to identify putative new drug targets. Copy number increases at 19q13 were quantitated in 16 pancreatic cancer cell lines and 31 primary tumors by fluorescence in situ hybridization. Cell line copy number data delineated a 1.1 Mb amplicon, the presence of which was also validated in 10% of primary pancreatic tumors. Comprehensive expression analysis by quantitative real-time reverse transcription-PCR indicated that seven transcripts within this region had consistently elevated expression levels in the amplified versus nonamplified cell lines. High-throughput loss-of-function screen by RNA interference was applied across the amplicon to identify genes whose down-regulation affected cell viability. This screen revealed five genes whose down-regulation led to significantly decreased cell viability in the amplified PANC-1 cells but not in the nonamplified MiaPaca-2 cells, suggesting the presence of multiple biologically interesting genes in this region. Of these, the transcriptional regulator intersex-like (IXL) was consistently overexpressed in amplified cells and had the most dramatic effect on cell viability. IXL silencing also resulted in G(0)-G(1) cell cycle arrest and increased apoptosis in PANC-1 cells. These findings implicate IXL as a novel amplification target gene in pancreatic cancer and suggest that IXL is required for cancer cell survival in 19q13-amplified tumors.


International Journal of Cancer | 2008

Functional evidence implicating S100P in prostate cancer progression.

Gargi D. Basu; David O. Azorsa; Jeffrey Kiefer; Angela Rojas; Sukru Tuzmen; Michael T. Barrett; Jeffrey M. Trent; Olli Kallioniemi; Spyro Mousses

S100P protein regulates calcium signal transduction and mediates cytoskeletal interaction, protein phosphorylation and transcriptional control. We have previously shown how elevated S100P levels in prostate cancer strongly correlate with progression to metastatic disease. In our study, we evaluated the functional significance of S100P expression on prostate tumor growth in vitro and in vivo. S100P levels were modulated by overexpressing S100P in PC3 prostate cancer cells and by silencing S100P levels in 22Rv1 prostate cancer cells. Overexpression of S100P in PC3 cells promoted cell growth, increased the percentage of S‐phase cells, decreased basal apoptosis rate and promoted anchorage independent growth in soft agar. Furthermore, prostate cancer cells overexpressing S100P were protected against camptothecin‐induced apoptosis. Conversely, silencing of S100P in 22Rv1 cells using siRNA resulted in a prominent cytostatic effect. The influence of S100P on tumor growth and metastases were assessed in vivo. S100P‐overexpressing PC3 cells had a dramatically increased tumor formation compared to controls. Microarray analysis showed the involvement of growth pathways including increased androgen receptor expression in S100P‐overexpressing cells. These results provide the first functional proof that S100P overexpression can upregulate androgen receptor expression and thereby promote prostate cancer progression by increasing cell growth. Moreover, the results confirm the oncogenic nature of S100P in prostate cancer and suggest that the protein may directly confer resistance to chemotherapy. Hence, S100P could be considered a potential drug target or a chemosensitization target, and could also serve as a biomarker for aggressive, hormone‐refractory and metastatic prostate cancer.

Collaboration


Dive into the Gargi D. Basu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David O. Azorsa

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmet Kurdoglu

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Janine LoBello

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Spyro Mousses

Translational Genomics Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge