Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Garrett A. Soukup is active.

Publication


Featured researches published by Garrett A. Soukup.


Brain Research | 2006

MicroRNA gene expression in the mouse inner ear.

Michael D. Weston; Marsha L. Pierce; Sonia M. Rocha-Sanchez; Kirk W. Beisel; Garrett A. Soukup

MicroRNAs (miRNAs) are small non-coding RNAs that function through the RNA interference (RNAi) pathway and post-transcriptionally regulate gene expression in eukaryotic organisms. While miRNAs are known to affect cellular proliferation, differentiation, and morphological development, neither their expression nor roles in mammalian inner ear development have been characterized. We have investigated the extent of miRNA expression at various time points throughout maturation of the postnatal mouse inner ear by microarray analysis. Approximately one third of known miRNAs are detected in the inner ear, and their expression persists to adulthood. Expression of such miRNAs is validated by quantitative PCR and northern blot analysis. Further analysis by in situ hybridization demonstrates that certain miRNAs exhibit cell-specific expression patterns in the mouse inner ear. Notably, we demonstrate that miRNAs previously associated with mechanosensory cells in zebrafish are also expressed in hair cells of the auditory and vestibular endorgans. Our results demonstrate that miRNA expression is abundant in the mammalian inner ear and that certain miRNAs are evolutionarily associated with mechanosensory cell development and/or function. The data suggest that miRNAs contribute substantially to genetic programs intrinsic to development and function of the mammalian inner ear and that specific miRNAs might influence formation of sensory epithelia from the primitive otic neuroepithelium.


Trends in Biotechnology | 1999

Nucleic acid molecular switches

Garrett A. Soukup; Ronald R. Breaker

Natural and artificial ribozymes can catalyse a diverse range of chemical reactions. Through recent efforts in enzyme engineering, it has become possible to tailor the activity of ribozymes to respond allosterically to specific effector compounds. These allosteric ribozymes function as effector-dependent molecular switches that could find application as novel genetic-control elements, biosensor components or precision switches for use in nanotechnology.


Current Opinion in Structural Biology | 2000

Allosteric nucleic acid catalysts.

Garrett A. Soukup; Ronald R. Breaker

Endowing nucleic acid catalysts with allosteric properties provides new prospects for RNA and DNA as controllable therapeutic agents or as sensors of their cognate effector compounds. The ability to engineer RNA catalysts that are allosterically regulated by effector binding has been propelled by the union of modular rational design principles and powerful combinatorial strategies.


Journal of Immunology | 2009

MicroRNA-513 Regulates B7-H1 Translation and Is Involved in IFN-γ-Induced B7-H1 Expression in Cholangiocytes

Ai Yu Gong; Rui Zhou; Guoku Hu; Xiaoqing Li; Patrick L. Splinter; Steven P. O'Hara; Nicholas F. LaRusso; Garrett A. Soukup; Haidong Dong; Xian Ming Chen

Biliary epithelial cells (cholangiocytes) respond to proinflammatory cytokines such as IFN-γ and actively participate in the regulation of biliary inflammatory response in the liver. B7-H1 (also known as CD274 or PD-L1) is a member of the B7 costimulatory molecules and plays a critical immunoregulatory role in cell-mediated immune responses. In this study, we show that resting human cholangiocytes in culture express B7-H1 mRNA, but not B7-H1 protein. IFN-γ induces B7-H1 protein expression and alters the microRNA (miRNA) expression profile in cholangiocytes. Of those IFN-γ-down-regulated miRNAs, we identified microRNA-513 (miR-513) with complementarity to the 3′-untranslated region of B7-H1 mRNA. Targeting of the B7-H1 3′-untranslated region by miR-513 results in translational repression. Transfection of cholangiocytes with an antisense oligonucleotide to miR-513 induces B7-H1 protein expression. Additionally, transfection of miR-513 precursor decreases IFN-γ-induced B7-H1 protein expression and consequently influences B7-H1-associated apoptotic cell death in cocultured Jurkat cells. Thus, miR-513 regulates B7-H1 translation and is involved in IFN-γ-induced B7-H1 expression in human cholangiocytes, suggesting a role for miRNA-mediated gene silencing in the regulation of cholangiocyte response to IFN-γ.


Evolution & Development | 2008

MicroRNA-183 family conservation and ciliated neurosensory organ expression

Marsha L. Pierce; Michael D. Weston; Bernd Fritzsch; Harrison W. Gabel; Gary Ruvkun; Garrett A. Soukup

SUMMARY MicroRNAs (miRNAs) are an integral component of the metazoan genome and affect posttranscriptional repression of target messenger RNAs. The extreme phylogenetic conservation of certain miRNAs suggests their ancient origin and crucial function in conserved developmental processes. We demonstrate that highly conserved miRNA‐183 orthologs exist in both deuterostomes and protostomes and their expression is predominant in ciliated ectodermal cells and organs. The miRNA‐183 family members are expressed in vertebrate sensory hair cells, in innervated regions of invertebrate deuterostomes, and in sensilla of Drosophila and C. elegans. Thus, miRNA‐183 family member expression is conserved in possibly homologous but morphologically distinct sensory cells and organs. The results suggest that miR‐183 family members contribute specifically to neurosensory development or function, and that extant metazoan sensory organs are derived from cells that share genetic programs of common evolutionary origin.


Developmental Biology | 2009

Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice

Garrett A. Soukup; Bernd Fritzsch; Marsha L. Pierce; Michael D. Weston; Israt Jahan; Michael T. McManus; Brian D. Harfe

Inner ear development requires coordinated transformation of a uniform sheet of cells into a labyrinth with multiple cell types. While numerous regulatory proteins have been shown to play critical roles in this process, the regulatory functions of microRNAs (miRNAs) have not been explored. To demonstrate the importance of miRNAs in inner ear development, we generated conditional Dicer knockout mice by the expression of Cre recombinase in the otic placode at E8.5. Otocyst-derived ganglia exhibit rapid neuron-specific miR-124 depletion by E11.5, degeneration by E12.5, and profound defects in subsequent sensory epithelial innervations by E17.5. However, the small and malformed inner ear at E17.5 exhibits residual and graded hair cell-specific miR-183 expression in the three remaining sensory epithelia (posterior crista, utricle, and cochlea) that closely corresponds to the degree of hair cell and sensory epithelium differentiation, and Fgf10 expression required for morphohistogenesis. The highest miR-183 expression is observed in near-normal hair cells of the posterior crista, whereas the reduced utricular macula demonstrates weak miR-183 expression and develops presumptive hair cells with numerous disorganized microvilli instead of ordered stereocilia. The correlation of differential and delayed depletion of mature miRNAs with the derailment of inner ear development demonstrates that miRNAs are crucial for inner ear neurosensory development and neurosensory-dependent morphogenesis.


Structure | 1999

Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization.

Garrett A. Soukup; Ronald R. Breaker

BACKGROUND Ribozymes can function as allosteric enzymes that undergo a conformational change upon ligand binding to a site other than the active site. Although allosteric ribozymes are not known to exist in nature, nucleic acids appear to be well suited to display such advanced forms of kinetic control. Current research explores the mechanisms of allosteric ribozymes as well as the strategies and methods that can be used to create new controllable enzymes. RESULTS In this study, we exploit the modular nature of certain functional RNAs to engineer allosteric ribozymes that are activated by flavin mononucleotide (FMN) or theophylline. By joining an FMN- or theophylline-binding domain to a hammerhead ribozyme by different stem II elements, we have identified a minimal connective bridge comprised of a G.U wobble pair that is responsive to ligand binding. Binding of FMN or theophylline to its allosteric site induces a conformational change in the RNA that stabilizes the wobble pair and ultimately favors the active form of the catalytic core. These ligand-sensitive ribozymes exhibit rate enhancements of more than 100-fold in the presence of FMN and of approximately 40-fold in the presence of theophylline. CONCLUSIONS An adaptive strategy for modular rational design has proven to be an effective approach to the engineering of novel allosteric ribozymes. This strategy was used to create allosteric ribozymes that function by a mechanism involving ligand-induced structure stabilization. Conceivably, similar engineering strategies and allosteric mechanisms could be used to create a variety of novel allosteric ribozymes that function with other effector molecules.


Developmental Dynamics | 2011

MicroRNA-183 family expression in hair cell development and requirement of microRNAs for hair cell maintenance and survival

Michael D. Weston; Marsha L. Pierce; Heather Jensen-Smith; Bernd Fritzsch; Sonia M. Rocha-Sanchez; Kirk W. Beisel; Garrett A. Soukup

MicroRNAs (miRNAs) post‐transcriptionally repress complementary target gene expression and can contribute to cell differentiation. The coordinate expression of miRNA‐183 family members (miR‐183, miR‐96, and miR‐182) has been demonstrated in sensory cells of the mouse inner ear and other vertebrate sensory organs. To further examine hair cell miRNA expression in the mouse inner ear, we have analyzed miR‐183 family expression in wild type animals and various mutants with defects in neurosensory development. miR‐183 family member expression follows neurosensory cell specification, exhibits longitudinal (basal‐apical) gradients in maturating cochlear hair cells, and is maintained in sensory neurons and most hair cells into adulthood. Depletion of hair cell miRNAs resulting from Dicer1 conditional knockout (CKO) in Atoh1‐Cre transgenic mice leads to more disparate basal‐apical gene expression profiles and eventual hair cell loss. Results suggest that hair cell miRNAs subdue cochlear gradient gene expression and are required for hair cell maintenance and survival. Developmental Dynamics 240:808–819, 2011.


The Journal of Neuroscience | 2014

Characterization of transcriptomes of cochlear inner and outer hair cells.

Huizhan Liu; Jason L. Pecka; Qian Zhang; Garrett A. Soukup; Kirk W. Beisel; David Z. Z. He

Inner hair cells (IHCs) and outer hair cells (OHCs) are the two types of sensory receptor cells that are critical for hearing in the mammalian cochlea. IHCs and OHCs have different morphology and function. The genetic mechanisms that define their morphological and functional specializations are essentially unknown. The transcriptome reflects the genes that are being actively expressed in a cell and holds the key to understanding the molecular mechanisms of the biological properties of the cell. Using DNA microarray, we examined the transcriptome of 2000 individually collected IHCs and OHCs from adult mouse cochleae. We show that 16,647 and 17,711 transcripts are expressed in IHCs and OHCs, respectively. Of those genes, ∼73% are known genes, 22% are uncharacterized sequences, and 5.0% are noncoding RNAs in both populations. A total of 16,117 transcripts are expressed in both populations. Uniquely and differentially expressed genes account for <15% of all genes in either cell type. The top 10 differentially expressed genes include Slc17a8, Dnajc5b, Slc1a3, Atp2a3, Osbpl6, Slc7a14, Bcl2, Bin1, Prkd1, and Map4k4 in IHCs and Slc26a5, C1ql1, Strc, Dnm3, Plbd1, Lbh, Olfm1, Plce1, Tectb, and Ankrd22 in OHCs. We analyzed commonly and differentially expressed genes with the focus on genes related to hair cell specializations in the apical, basolateral, and synaptic membranes. Eighty-three percent of the known deafness-related genes are expressed in hair cells. We also analyzed genes involved in cell-cycle regulation. Our dataset holds an extraordinary trove of information about the molecular mechanisms underlying hair cell morphology, function, pathology, and cell-cycle control.


Nature Structural & Molecular Biology | 2006

Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme

Joshua A. Jansen; Tom J. McCarthy; Garrett A. Soukup; Juliane K. Soukup

The glmS ribozyme resides in the 5′ untranslated region of glmS mRNA and functions as a catalytic riboswitch that regulates amino sugar metabolism in certain Gram-positive bacteria. The ribozyme catalyzes self-cleavage of the mRNA and ultimately inhibits gene expression in response to binding of glucosamine-6-phosphate (GlcN6P), the metabolic product of the GlmS protein. We have used nucleotide analog interference mapping (NAIM) and suppression (NAIS) to investigate backbone and nucleobase functional groups essential for ligand-dependent ribozyme function. NAIM using GlcN6P as ligand identified requisite structural features and potential sites of ligand and/or metal ion interaction, whereas NAIS using glucosamine as ligand analog revealed those sites that orchestrate recognition of ligand phosphate. These studies demonstrate that the ligand-binding site lies in close proximity to the cleavage site in an emerging model of ribozyme structure that supports a role for ligand within the catalytic core.

Collaboration


Dive into the Garrett A. Soukup's collaboration.

Top Co-Authors

Avatar

Ronald R. Breaker

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge