Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Garrett Casey is active.

Publication


Featured researches published by Garrett Casey.


Applied and Environmental Microbiology | 2007

A Five-Strain Probiotic Combination Reduces Pathogen Shedding and Alleviates Disease Signs in Pigs Challenged with Salmonella enterica Serovar Typhimurium

Pat G. Casey; Gillian E. Gardiner; Garrett Casey; Bernard Bradshaw; Peadar G. Lawlor; P. Brendan Lynch; F. C. Leonard; Catherine Stanton; R. Paul Ross; Gerald F. Fitzgerald; Colin Hill

ABSTRACT Salmonella spp. infection is a major cause of gastroenteritis, with many thousands of cases reported in the European Union every year. The use of probiotics offers the potential to improve this situation. Here, we investigate the effects of oral treatment of pigs with a defined lactic acid bacteria culture mixture on both clinical and microbiological signs of Salmonella enterica serovar Typhimurium infection. Fifteen weaned pigs blocked by sex and weight were administered control milk or a mixture of five probiotic strains as either a milk fermentate or milk suspension for a total of 30 days. The mixture consisted of two strains of Lactobacillus murinus and one strain each of Lactobacillus salivarius subsp. salivarius, Lactobacillus pentosus, and Pediococcus pentosaceous. Following probiotic administration for 6 days, animals were challenged orally with serovar Typhimurium; the health of the animals and the microbiological composition of their feces were monitored for 23 days postinfection. Animals treated with probiotic showed reduced incidence, severity, and duration of diarrhea. These animals also gained weight at a greater rate than control pigs administered skim milk. Mean fecal numbers of Salmonella were significantly reduced in probiotic-treated animals at 15 days postinfection (P = 0.01). The administered probiotic bacteria improved both the clinical and microbiological outcome of Salmonella infection. These strains offer significant benefit for use in the food industry and may have potential in human applications.


Letters in Applied Microbiology | 2004

Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract

Pat G. Casey; Garrett Casey; Gillian E. Gardiner; Mark Tangney; Catherine Stanton; R.P. Ross; Colin Hill; Gerald F. Fitzgerald

Aims:  To identify lactic acid bacteria (LAB) of porcine intestinal origin with anti‐Salmonella activity.


Applied and Environmental Microbiology | 2004

Relative Ability of Orally Administered Lactobacillus murinus To Predominate and Persist in the Porcine Gastrointestinal Tract

Gillian E. Gardiner; Pat G. Casey; Garrett Casey; P. Brendan Lynch; Peadar G. Lawlor; Colin Hill; Gerald F. Fitzgerald; Catherine Stanton; R. Paul Ross

ABSTRACT Five porcine-derived Lactobacillus or Pediococcus isolates administered to pigs (n = 4), either singly or as a combination at ∼1010 CFU per day varied with respect to intestinal survival and persistence. Two Lactobacillus murinus strains survived best and were excreted at ∼107 to 108 CFU/g of feces. In contrast, Pediococcus pentosaceus DPC6006 had the lowest fecal count at ∼105 CFU/g and was excreted at a significantly lower level than both L. murinus strains. Fecal L. murinus DPC6003 counts were also significantly higher than both Lactobacillus salivarius DPC6005 and Lactobacillus pentosus DPC6004 (∼106 CFU/g). The L. murinus strains persisted for at least 9 days postadministration in both the feces and the cecum. Animals fed a combination of all five strains excreted ∼107 CFU of the administered strains/g, with L. murinus predominating, as determined by randomly amplified polymorphic DNA PCR. Postadministration, variation was observed between animals fed the strain combination, but in general, L. murinus DPC6002 and DPC6003 and L. pentosus DPC6004 predominated in the feces and the cecum while P. pentosaceus DPC6006 was detected only in the cecum. Fifteen days after the start of culture administration, mean fecal Enterobacteriaceae counts were significantly lower in some of the treatment groups. In addition, when mean preadministration counts were compared with those obtained after 21 days of culture administration, Enterobacteriaceae counts were reduced by ∼87 to 98% in pigs fed L. salivarius DPC6005, P. pentosaceus DPC6006, L. pentosus DPC6004, and the culture mix. In conclusion, the porcine intestinal isolates have potential as probiotic feed additives for pigs, with differences in strain performance highlighting the advantages of using culture combinations.


Cancer Gene Therapy | 2006

Local gene therapy of solid tumors with GM-CSF and B7-1 eradicates both treated and distal tumors.

C. Collins; Mark Tangney; John O. Larkin; Garrett Casey; Maria C. Whelan; James Cashman; J Murphy; Declan M. Soden; S Vejda; S McKenna; B Kiely; J K Collins; J Barrett; Simon Aarons; Gerald C. O'Sullivan

Gene therapy-induced expression of immunostimulatory molecules at tumor cell level may evoke antitumor immune mechanisms by recruiting and enhancing viability of antigen-processing cells and specific tumoricidal lymphocytes. The antitumor efficacy of a plasmid, coding for granulocyte–macrophage colony-stimulating factor (GM-CSF) and the B7-1 costimulatory immune molecule, delivered into growing solid tumors by electroporation was investigated. Murine fibrosarcomas (JBS) growing in Balb/C mice (⩽100 mm3) were transfected with GM-CSF/B7-1-expressing plasmid. Complete tumor regression occurred in greater than 60% of treated animals. This response was systemic, durable and tumor specific, with all responding animals resistant to repeat tumor challenge. Using a liver metastatic model, effective cure of distal metastases was achieved following treatment of the primary subcutaneous tumor. This treatment strategy could be applicable in the clinical setting for effective elimination of both primary tumors and associated metastatic disease.


Molecular Therapy | 2009

Prostate stem cell antigen DNA vaccination breaks tolerance to self-antigen and inhibits prostate cancer growth.

Sarfraz Ahmad; Garrett Casey; Paul Sweeney; Mark Tangney; Gerald C. O'Sullivan

Prostate stem cell antigen (PSCA) is a cell surface antigen expressed in normal human prostate and over expressed in prostate cancer. Elevated levels of PSCA protein in prostate cancer correlate with increased tumor stage/grade, with androgen independence and have higher expression in bone metastases. In this study, the PSCA gene was isolated from the transgenic adenocarcinoma mouse prostate cell line (TRAMPC1), and a vaccine plasmid construct was generated. This plasmid PSCA (pmPSCA) was delivered by intramuscular electroporation (EP) and induced effective antitumor immune responses against subcutaneous TRAMPC1 tumors in male C57 BL/6 mice. The pmPSCA vaccination inhibited tumor growth, resulting in cure or prolongation in survival. Similarly, the vaccine inhibited metastases in PSCA expressing B16 F10 tumors. There was activation of Th-1 type immunity against PSCA, indicating the breaking of tolerance to a self-antigen. This immunity was tumor specific and was transferable by adoptive transfer of splenocytes. The mice remained healthy and there was no evidence of collateral autoimmune responses in normal tissues. EP-assisted delivery of the pmPSCA evoked strong specific responses and could, in neoadjuvant or adjuvant settings, provide a safe and effective immune control of prostate cancer, given that there is significant homology between human and mouse PSCA.


Ultrasound in Medicine and Biology | 2010

Sonoporation Mediated Immunogene Therapy of Solid Tumors

Garrett Casey; James Cashman; David Morrissey; Maria C. Whelan; John O. Larkin; Declan M. Soden; Mark Tangney; Gerald C. O'Sullivan

Development of gene-based therapies for the treatment of inherited and acquired diseases, including cancer, has seen renewed interest in the use of nonviral vectors coupled to physical delivery modalities. Low-frequency ultrasound (US), with a well-established record in a clinical setting, has the potential to deliver DNA efficiently, accurately and safely. Optimal in vivo parameters for US-mediated delivery of naked plasmid DNA were established using the firefly luciferase reporter gene construct. Optimized parameters were used to administer a therapeutic gene construct, coding for granulocyte-macrophage colony-stimulating factor (GM-CSF) and B7-1 costimulatory molecule, to growing murine fibrosarcoma tumors. Tumor progression and animal survival was monitored throughout the study and the efficacy of the US-mediated gene therapy determined and compared with an electroporation-based approach. Optimal parameters for US-mediated delivery of plasmid DNA to tumors were deduced to be 1.0 W/cm(2) at 20% duty cycle for 5 min (60 J/cm(2)). In vivo US-mediated gene therapy resulted in a 55% cure rate in tumor-bearing animals. The immunological response invoked was cell mediated, conferring resistance against re-challenge and resistance to tumor challenge after transfer of splenocytes to naïve animals. US treatment was noninjurious to treated tissue, whereas therapeutic efficacy was comparable to an electroporation-based approach. US-mediated delivery of an immune-gene construct to growing tumors was therapeutically effective. Sonoporation has the potential to be a major factor in the development of nonviral gene delivery approaches.


The Journal of Urology | 2011

Induction of Effective Antitumor Response After Mucosal Bacterial Vector Mediated DNA Vaccination With Endogenous Prostate Cancer Specific Antigen

Sarfraz Ahmad; Garrett Casey; Michelle Cronin; Simon Rajendran; Paul Sweeney; Mark Tangney; Gerald C. O'Sullivan

PURPOSE The induction of systemic immune responses against antigenic targets that are over expressed by cancer cells represents a powerful therapeutic strategy to target metastatic cancer. We generated specific antitumor immune responses in a murine model of prostate cancer by oral administration of an attenuated strain of Salmonella typhimurium containing a plasmid coding for murine prostate stem cell antigen. MATERIALS AND METHODS Trafficking of S. typhimurium SL7207 in the initial 10 hours after gavage feeding was determined using a bacterial lux expressing strain and live bioluminescence imaging. For vaccination trials male C57 BL/6 mice were gavage fed SL7207/murine prostate stem cell antigen expressing plasmid or controls twice at 2-week intervals. One week after the last feeding the mice were challenged subcutaneously with TRAMPC1 murine prostate carcinoma cells. Tumor dynamics and animal survival were recorded. RESULTS Clearance of bacterial vector from animals was complete 9 hours after feeding. Delivery of vector transformed with a firefly luciferase reporter plasmid resulted in maximal eukaryotic reporter gene expression in splenocytes 48 hours after feeding. Induction of tumor protective immunity was achieved by feeding the mice murine prostate stem cell antigen expressing plasmid bearing bacteria and greater than 50% of immunized mice remained tumor free. No significant toxicity was observed. Induction of T-helper type 1 immune responses was determined by measuring interferon-γ produced by splenocytes from vaccinated mice. When adoptively transferred to naive animals, splenocytes from vaccinated mice prevented tumor growth in 66% of challenged animals. CONCLUSIONS Endogenous prostate cancer antigen gene delivery using a bacterial vector resulted in breaking immune tolerance to murine prostate stem cell antigen and significant retardation of tumor growth.


Genetic Vaccines and Therapy | 2010

Optimised electroporation mediated DNA vaccination for treatment of prostate cancer

Sarfraz Ahmad; Garrett Casey; Paul Sweeney; Mark Tangney; Gerald C. O'Sullivan

BackgroundImmunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer.MethodsPlasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 μg plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNγ. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice.ResultsThe phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses, preventing tumour occurrence in 54% of treated animals. Vaccination with phPSA resulted in anti-hPSA Abs production and a significant production of IFNγ was observed in immunised animals (p < 0.05). Immune responses were tumour specific and were transferable in adoptive T cell transfer experiments.ConclusionsThis phPSA plasmid electroporation vaccination strategy can effectively activate tumour specific immune responses. Optimisation of the approach indicated that a four-dose regimen provided highest tumour protection. In vivo electroporation mediated vaccination is a safe and effective modality for the treatment of prostate cancer and has a potential to be used as a neo-adjuvant or adjuvant therapy.


Cancer Immunology, Immunotherapy | 2006

Non-viral in vivo immune gene therapy of cancer: combined strategies for treatment of systemic disease

Mark Tangney; Garrett Casey; John O. Larkin; C. Collins; Declan M. Soden; James Cashman; Maria C. Whelan; Gerald C. O’Sullivan

Many patients with various types of cancers have already by the time of presentation, micrometastases in their tissues and are left after treatment in a minimal residual disease state [Am J Gastroenterol 95(12), 2000]. To prevent tumour recurrence these patients require a systemic based therapy, but current modalities are limited by toxicity or lack of efficacy. We have previously reported that immune reactivity to the primary tumour is an important regulator of micrometastases and determinant of prognosis. This suggests that recruitment of specific anti-tumour mechanisms within the primary tumour could be used advantageously for tumour control as either primary or neo-adjuvant treatments. Recently, we have focused on methods of stimulating immune eradication of solid tumours and minimal residual disease using gene therapy approaches. Gene therapy is now a realistic prospect and a number of delivery approaches have been explored, including the use of viral and non-viral vectors. Non-viral vectors have received significant attention since, in spite of their relative delivery inefficiency, they may be safer and have greater potential for delivery of larger genetic units. By in vivo electroporation of the primary tumour with plasmid expressing GM-CSF and B7-1, we aim to stimulate immune eradication of the treated tumour and associated metastases. In this symposium report, we describe an effective gene based approach for cancer immunotherapy by inducing cytokine and immune co-stimulatory molecule expression by the growing cells of the primary tumour using a plasmid electroporation gene delivery strategy. We discuss the potential for enhancement of this therapy by its application as a neoadjuvant to surgical excision and by its use in combination with suppressor T cell depletion.


Cancer Gene Therapy | 2010

Effective immunotherapy of weakly immunogenic solid tumours using a combined immunogene therapy and regulatory T-cell inactivation

Maria C. Whelan; Garrett Casey; Malcolm MacConmara; James A. Lederer; Declan M. Soden; J K Collins; Mark Tangney; Gerald C. O'Sullivan

Obstacles to effective immunotherapeutic anti-cancer approaches include poor immunogenicity of the tumour cells and the presence of tolerogenic mechanisms in the tumour microenvironment. We report an effective immune-based treatment of weakly immunogenic, growing solid tumours using a locally delivered immunogene therapy to promote development of immune effector responses in the tumour microenvironment and a systemic based T regulatory cell (Treg) inactivation strategy to potentiate these responses by elimination of tolerogenic or immune suppressor influences. As the JBS fibrosarcoma is weakly immunogenic and accumulates Treg in its microenvironment with progressive growth, we used this tumour model to test our combined immunotherapies. Plasmids encoding GM-CSF and B7-1 were electrically delivered into 100 mm3 tumours; Treg inactivation was accomplished by systemic administration of anti-CD25 antibody (Ab). Using this approach, we found that complete elimination of tumours was achieved at a level of 60% by immunogene therapy, 25% for Treg inactivation and 90% for combined therapies. Moreover, we found that these responses were immune transferable, systemic, tumour specific and durable. Combined gene-based immune effector therapy and Treg inactivation represents an effective treatment for weakly antigenic solid growing tumours and that could be considered for clinical development.

Collaboration


Dive into the Garrett Casey's collaboration.

Top Co-Authors

Avatar

Mark Tangney

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Collins

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Hill

University College Cork

View shared research outputs
Researchain Logo
Decentralizing Knowledge