Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Garrett Daniels is active.

Publication


Featured researches published by Garrett Daniels.


Clinical Cancer Research | 2011

Regulation of HMGA1 Expression by MicroRNA-296 Affects Prostate Cancer Growth and Invasion

Jian Jun Wei; Xinyu Wu; Yi Peng; Guizhi Shi; Basturk Olca; Ximing J. Yang; Garrett Daniels; Iman Osman; Jiangyong Ouyang; Eva Hernando; Angel Pellicer; Johng S. Rhim; Jonathan Melamed; Peng Lee

Purpose: High-motility group AT-hook gene 1 (HMGA1) is a non-histone nuclear binding protein that is developmentally regulated. HMGA1 is significantly overexpressed in and associated with high grade and advance stage of prostate cancer (PC). The oncogenic role of HMGA1 is at least mediated through chromosomal instability and structural aberrations. However, regulation of HMGA1 expression is not well understood. Identification of microRNA-mediated HMGA1 regulation will provide a promising therapeutic target in treating PC. Experimental Design: In this study, we examined the functional relation between miR-296 and HMGA1 expression in several PC cell lines and a large PC cohort. We further examined the oncogenic property of HMGA1 regulated by miR-296. Results: Here we report that miR-296, a microRNA predicted to target HMGA1, specifically represses HMGA1 expression by promoting degradation and inhibiting HMGA1translation. Repression of HMGA1 by miR-296 is direct and sequence specific. Importantly, ectopic miR-296 expression significantly reduced PC cell proliferation and invasion, in part through the downregulation of HMGA1. Examining PC patient samples, we found an inverse correlation between HMGA1 and miR-296 expression: high levels of HMGA1 were associated with low miR-296 expression and strongly linked to more advanced tumor grade and stage. Conclusions: Our results indicate that miR-296 regulates HMGA1 expression and is associated with PC growth and invasion. Clin Cancer Res; 17(6); 1297–305. ©2010 AACR.


PLOS ONE | 2011

Expression and function of androgen receptor coactivator p44/MEP50/WDR77 in ovarian cancer

Martin Ligr; Ruzeen Rohintan Patwa; Garrett Daniels; Lorraine Pan; Xinyu Wu; Yirong Li; Liantian Tian; Zhenxing Wang; Ruliang Xu; Jingjing Wu; Fan Chen; Jinsong Liu; Jian Jun Wei; Peng Lee

Hormones, including estrogen and progesterone, and their receptors play an important role in the development and progression of ovarian carcinoma. Androgen, its receptor and coactivators have also been implicated in these processes. p44/Mep50/WDR77 was identified as a subunit of the methylosome complex and lately characterized as a steroid receptor coactivator that enhances androgen receptor as well as estrogen receptor-mediated transcriptional activity in a ligand-dependent manner. We previously described distinct expression and function of p44 in prostate, testis, and breast cancers. In this report, we examined the expression and function of p44 in ovarian cancer. In contrast to findings in prostate and testicular cancer and similar to breast cancer, p44 shows strong cytoplasmic localization in morphologically normal ovarian surface and fallopian tube epithelia, while nuclear p44 is observed in invasive ovarian carcinoma. We observed that p44 can serve as a coactivator of both androgen receptor (AR) and estrogen receptor (ER) in ovarian cells. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in ovarian cancer cells in the presence of estrogen or androgen. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during ovarian tumorigenesis.


Clinical Cancer Research | 2011

Natura-Alpha Targets Forkhead Box M1 and Inhibits Androgen-Dependent and -Independent Prostate Cancer Growth and Invasion

Yirong Li; Martin Ligr; James P. Mccarron; Garrett Daniels; David Y. Zhang; Xin Zhao; Fei Ye; Jinhua Wang; Xiaomei Liu; Iman Osman; Simon K. Mencher; Hebert Lepor; Long G. Wang; Peng Lee

Purpose: The development of new effective therapeutic agents with minimal side effects for prostate cancer (PC) treatment is much needed. Indirubin, an active molecule identified in the traditional Chinese herbal medicine—Qing Dai (Indigo naturalis), has been used to treat leukemia for decades. However, the anticancer properties of Natura-alpha, an indirubin derivative, are not well studied in solid tumors, particularly in PC. Experimental Design: The growth kinetics and invasion ability of on human PC cell lines with or without Natura-alpha treatment were measured by cell proliferation and invasion assays. The antitumor effects of Natura-alpha were examined in nude mice tumor xenograft models, and in a patient with advanced hormone-refractory metastatic PC. Signal network proteins targeted by Natura-alpha were analyzed by using proteomic pathway array analysis (PPAA) on xenografts. Results: Natura-alpha inhibited the growth of both androgen-dependent (LNCaP) and androgen-independent (LNCaP-AI, PC-3, and DU145) PC cells with IC50 between 4 to 10 mmol/L, and also inhibited invasion of androgen-independent PC cells. Its antitumor effects were further evident in in vivo tumor reduction in androgen-dependent and androgen-independent nude mice tumor xenograft models and reduced tumor volume in the patient with hormone refractory metastatic PC. PPAA revealed that antiproliferative and antiinvasive activities of Natura-alpha on PC might primarily be through its downregulation of Forkhead box M1 (FOXM1) protein. Forced overexpression of FOXM1 largely reversed the inhibition of growth and invasion by Natura-alpha. Conclusion: Natura-alpha could serve as a novel and effective therapeutic agent for treatment of both hormone-sensitive and hormone-refractory PC with minimal side effects. Clin Cancer Res; 17(13); 4414–24. ©2011 AACR.


Molecular Cancer Research | 2015

LEF1 targeting EMT in prostate cancer invasion is regulated by miR-34a

Jiaqian Liang; Yirong Li; Garrett Daniels; Karen S. Sfanos; Angelo M. De Marzo; Jian Jun Wei; Xin Li; Wenqiang Chen; Jinhua Wang; Xuelin Zhong; Jonathan Melamed; Jun Zhao; Peng Lee

The microRNA-34a (miR-34a), a tumor-suppressive microRNA (miRNA), is implicated in epithelial–mesenchymal transition (EMT) and cancer stem cells. Lymphoid enhancer-binding factor-1 (LEF1) is a key transcription factor in the Wnt signaling pathway, and has been suggested to be involved in regulation of cell proliferation and invasion. Here, the molecular mechanism of miR-34a and LEF1 in cooperatively regulating prostate cancer cell invasion is described. Molecular profiling analysis of miRNA levels in prostate cancer cells revealed a negative correlation between miR-34a and LEF1 expression, and the downregulation of LEF1 by miR-34a was confirmed by luciferase assays. Furthermore, miR-34a specifically repressed LEF1 expression through direct binding to its 3′-untranslated regions (3′-UTR). miR-34a modulated the levels of LEF1 to regulate EMT in prostate cancer cells. Functionally, miR-34a negatively correlated with the migration and invasion of prostate cancer cells through LEF1. An analysis of miR-34a expression levels in matched human tumor and benign tissues demonstrated consistent and statistically significant downregulation of miR-34a in primary prostate cancer specimens. These data strongly suggest that miR-34a/LEF1 regulation of EMT plays an important role in prostate cancer migration and invasion. Implications: The miR-34a–LEF1 axis represents a potential molecular target for novel therapeutic strategies in prostate cancer. Mol Cancer Res; 13(4); 681–8. ©2015 AACR.


PLOS ONE | 2013

Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer.

Xinyu Wu; Yirong Li; Jinhua Wang; Xin Wen; Max T. Marcus; Garrett Daniels; David Y. Zhang; Fei Ye; Ling Hang Wang; Xinxin Du; Sylvia Adams; Baljit Singh; Jiri Zavadil; Peng Lee; Marie E. Monaco

The purpose of this study was to determine the role of long-chain fatty acyl-CoA synthetase 4 (ACSL4) in breast cancer. Public databases were utilized to analyze the relationship between ACSL4 mRNA expression and the presence of steroid hormone and human epidermal growth factor receptor 2 (HER2) in both breast cancer cell lines and tissue samples. In addition, cell lines were utilized to assess the consequences of either increased or decreased levels of ACSL4 expression. Proliferation, migration, anchorage-independent growth and apoptosis were used as biological end points. Effects on mRNA expression and signal transduction pathways were also monitored. A meta-analysis of public gene expression databases indicated that ACSL4 expression is positively correlated with a unique subtype of triple negative breast cancer (TNBC), characterized by the absence of androgen receptor (AR) and therefore referred to as quadruple negative breast cancer (QNBC). Results of experiments in breast cancer cell lines suggest that simultaneous expression of ACSL4 and a receptor is associated with hormone resistance. Forced expression of ACSL4 in ACSL4-negative, estrogen receptor α (ER)-positive MCF-7 cells resulted in increased growth, invasion and anchorage independent growth, as well as a loss of dependence on estrogen that was accompanied by a reduction in the levels of steroid hormone receptors. Sensitivity to tamoxifen, triacsin C and etoposide was also attenuated. Similarly, when HER2-positive, ACSL4-negative, SKBr3 breast cancer cells were induced to express ACSL4, the proliferation rate increased and the apoptotic effect of lapatinib was reduced. The growth stimulatory effect of ACSL4 expression was also observed in vivo in nude mice when MCF-7 control and ACSL4-expressing cells were utilized to induce tumors. Our data strongly suggest that ACSL4 can serve as both a biomarker for, and mediator of, an aggressive breast cancer phenotype.


American Journal of Pathology | 2010

Tumor Suppressor Function of Androgen Receptor Coactivator ARA70α in Prostate Cancer

Martin Ligr; Yirong Li; Xuanyi Zou; Garrett Daniels; Jonathan Melamed; Yi Peng; Wei Wang; Jinhua Wang; Harry Ostrer; Michele Pagano; Zhengxin Wang; Michael J. Garabedian; Peng Lee

Androgen receptor (AR), a member of the steroid receptor family, is a transcription factor that has an important role in the regulation of both prostate cell proliferation and growth suppression. AR coactivators may influence the transition between cell growth and growth suppression. We have shown previously that the internally spliced ARA70 isoform, ARA70beta, promotes prostate cancer cell growth and invasion. Here we report that the full length ARA70alpha, in contrast, represses prostate cancer cell proliferation and anchorage-independent growth in vitro and inhibits tumor growth in nude mice xenograft experiments in vivo. Further, the growth inhibition by ARA70alpha is AR-dependent and mediated through induction of apoptosis rather than cell cycle arrest. Interestingly, AR with T877A mutation in LNCaP cells decreased its physical and functional interaction with ARA70alpha, facilitating the growth of LNCaP cells. The tumor suppressor function of ARA70alpha is consistent with our previous findings that ARA70alpha expression is decreased in prostate cancer cells compared with benign prostate. ARA70alpha also reduced the invasion ability of LNCaP cells. Although growth inhibition by ARA70alpha is AR-dependent, the inhibition of cell invasion is an androgen-independent process. These results strongly suggest that ARA70alpha functions as a tumor suppressor gene.


Molecular and Cellular Biology | 2012

Regulation of a Novel Androgen Receptor Target Gene, the Cyclin B1 Gene, through Androgen-Dependent E2F Family Member Switching

Yirong Li; David Y. Zhang; Qinghu Ren; Fei Ye; Xin Zhao; Garrett Daniels; Xinyu Wu; Brian David Dynlacht; Peng Lee

ABSTRACT The malignant transformation of human prostatic epithelium is associated with the loss of androgen receptor (AR) in the surrounding stroma. However, the function and mechanisms of AR signaling in prostate cancer (PCa) stroma remain elusive. Here we report, by using proteomics pathway array analysis (PPAA), that androgen and its receptor inhibit the proliferation of prostate stromal cells through transcriptional suppression of cyclin B1, and we confirmed our findings at mRNA and protein levels using AR-negative or -positive primary prostate stromal cells. Furthermore, AR showed a negative correlation with cyclin B1 expression in stroma of human PCa samples in vivo. Mechanistically, we identify cyclin B1 as a bona fide AR target gene in prostate stromal cells. The negative regulation of cyclin B1 by AR is mediated through switching between E2F1 and E2F4 on the promoter of cyclin B1. E2F1 binds to the cyclin B1 promoter and maintains its expression and subsequent cell cycle progression in AR-negative stromal cells or AR-positive stromal cells when androgens are depleted. Upon stimulation with androgen in AR-positive stromal cells, E2F1 is displaced from the binding site by AR and replaced with E2F4, leading to the recruitment of the silencing mediator for retinoid and thyroid hormone receptor (SMRT)/histone deacetylase 3 (HDAC3) corepressor complex and repression of cyclin B1 at the chromatin level. The switch between E2F1 and E2F4 at the E2F binding site of the cyclin B1 promoter coincides with an androgen-dependent interaction between AR and E2F1 as well as the cytoplasmic-to-nuclear translocation of E2F4. Thus, we identified a novel mechanism for E2F factors in the regulation of cell cycle gene expression and cell cycle progression under the control of AR signaling.


Molecular Endocrinology | 2011

LEF1 Identifies Androgen-Independent Epithelium in the Developing Prostate

Xinyu Wu; Garrett Daniels; Ellen Shapiro; Kun Xu; Hongying Huang; Yirong Li; Susan K Logan; M. Alba Greco; Yi Peng; Marie E. Monaco; Jonathan Melamed; Herbert Lepor; Irina Grishina; Peng Lee

Lymphoid enhancer-binding factor (LEF)1 is a major mediator and a target in canonical Wnt/β-catenin pathway. Interactions between the androgen receptor (AR) and canonical Wnt pathways have been implicated in the development of the genitourinary organs. Here, we investigated the localization and role of LEF1-positive cells during development of the prostate gland in human and in the murine model. We show that during human prostate development, LEF1 is restricted to the basal epithelial layer of the urogenital sinus. During mouse development, Lef1 is also present in the urogenital mesenchyme in addition to the basal epithelial layer of the urogenital sinus. In the course of elongation and branching of the prostatic ducts, Lef1 is localized to the proliferating epithelium at the distal tips of the buds. Notably, during branching morphogenesis, domains of Lef1 and AR are mutually exclusive. We further employed the TOPGAL reporter strain to examine the dynamics of Wnt signaling in the context of prostate regression upon a 7-d treatment with a competitive AR inhibitor, bicalutamide. We found that Wnt/Lef1-positive basal cells are not dependent upon androgen for survival. Furthermore, upon bicalutamide treatment, Wnt/Lef1-positive basal progenitors repopulated the luminal compartment. We conclude that Wnt/Lef1 activity identifies an androgen-independent population of prostate progenitors, which is important for embryonic development and organ maintenance and regeneration in the adult.


Journal of Cellular and Molecular Medicine | 2010

Androgen receptor coactivator p44/Mep50 in breast cancer growth and invasion

Yi Peng; Yirong Li; Lan Lin Gellert; Xuanyi Zou; Jun Wang; Baljit Singh; Ruliang Xu; Luis Chiriboga; Garrett Daniels; Ruimin Pan; David Y. Zhang; Michael J. Garabedian; Robert J. Schneider; Zhengxin Wang; Peng Lee

Hormones and their receptors play an important role in the development and progression of breast carcinoma. Although the primary focus has been on oestrogen and oestrogen receptor (ER), androgen, androgen receptor (AR) and its coactivator(s) have been implicated in tumorigenesis of breast carcinoma and warrant further investigation. AR coactivator p44/Mep50 is identified as a subunit of methylosome complex and lately characterized as an AR coactivator that enhances AR mediated transcription activity in a ligand dependent manner. In prostate cancer, p44 is expressed in the nucleus of benign epithelia and translocated into the cytoplasm in cancer cells. Furthermore, nuclear expression of p44 inhibits prostate cancer growth. In this report, we examined the expression and function of p44 in breast cancer. In addition to being an AR coactivator, p44 also functions as an ER coactivator. In contrast to findings in prostate cancer, the expression of p44 shows strong cytoplasmic expression in morphologically normal terminal ductal lobular units, while nuclear p44 is observed in both ductal carcinoma in situ and invasive carcinoma. Further, overexpression of nuclear‐localized p44 stimulates proliferation and invasion in MCF7 breast cancer cells in the presence of oestrogen and the process is ERα dependent. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during tumorigenesis in breast.


Endocrine-related Cancer | 2014

TBLR1 as an androgen receptor (AR) coactivator selectively activates AR target genes to inhibit prostate cancer growth

Garrett Daniels; Yirong Li; Lan Lin Gellert; Albert Zhou; Jonathan Melamed; Xinyu Wu; Xinmin Zhang; David Y Zhang; Daniel Meruelo; Susan K Logan; Ross Basch; Peng Lee

Androgen receptor (AR), a steroid hormone receptor, is critical for prostate cancer growth. However, activation of AR by androgens can also lead to growth suppression and differentiation. Transcriptional cofactors play an important role in this switch between proliferative and anti-proliferative AR target gene programs. Transducin β-like-related protein 1 (TBLR1), a core component of the nuclear receptor corepressor complex, shows both corepressor and coactivator activities on nuclear receptors, but little is known about its effects on AR and prostate cancer. We characterized TBLR1 as a coactivator of AR in prostate cancer cells and determined that the activation is dependent on both phosphorylation and 19S proteosome. We showed that TBLR1 physically interacts with AR and directly occupies the androgen-response elements of the affected AR target genes in an androgen-dependent manner. TBLR1 is primarily localized in the nucleus in benign prostate cells and nuclear expression is significantly reduced in prostate cancer cells in culture. Similarly, in human tumor samples, the expression of TBLR1 in the nucleus is significantly reduced in the malignant glands compared with the surrounding benign prostatic glands (P<0.005). Stable ectopic expression of nuclear TBLR1 leads to androgen-dependent growth suppression of prostate cancer cells in vitro and in vivo by selective activation of androgen-regulated genes associated with differentiation (e.g. KRT18) and growth suppression (e.g. NKX3-1), but not cell proliferation of the prostate cancer. Understanding the molecular switches involved in the transition from AR-dependent growth promotion to AR-dependent growth suppression will lead to more successful treatments for prostate cancer.

Collaboration


Dive into the Garrett Daniels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Jun Wei

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Y. Zhang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Fei Ye

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge