Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Garry E. Gold is active.

Publication


Featured researches published by Garry E. Gold.


Magnetic Resonance in Medicine | 2005

Iterative Decomposition of Water and Fat With Echo Asymmetry and Least-Squares Estimation (IDEAL): Application With Fast Spin-Echo Imaging

Scott B. Reeder; Angel R. Pineda; Zhifei Wen; Ann Shimakawa; Huanzhou Yu; Jean H. Brittain; Garry E. Gold; Christopher H. Beaulieu; Norbert J. Pelc

Chemical shift based methods are often used to achieve uniform water–fat separation that is insensitive to Bo inhomogeneities. Many spin‐echo (SE) or fast SE (FSE) approaches acquire three echoes shifted symmetrically about the SE, creating time‐dependent phase shifts caused by water–fat chemical shift. This work demonstrates that symmetrically acquired echoes cause artifacts that degrade image quality. According to theory, the noise performance of any water–fat separation method is dependent on the proportion of water and fat within a voxel, and the position of echoes relative to the SE. To address this problem, we propose a method termed “iterative decomposition of water and fat with echo asymmetric and least‐squares estimation” (IDEAL). This technique combines asymmetrically acquired echoes with an iterative least‐squares decomposition algorithm to maximize noise performance. Theoretical calculations predict that the optimal echo combination occurs when the relative phase of the echoes is separated by 2π/3, with the middle echo centered at π/2+πk (k = any integer), i.e., (–π/6+πk, π/2+πk, 7π/6+πk). Only with these echo combinations can noise performance reach the maximum possible and be independent of the proportion of water and fat. Close agreement between theoretical and experimental results obtained from an oil–water phantom was observed, demonstrating that the iterative least‐squares decomposition method is an efficient estimator. Magn Reson Med, 2005.


Magnetic Resonance in Medicine | 2004

Multicoil Dixon Chemical Species Separation with an Iterative Least-Squares Estimation Method

Scott B. Reeder; Zhifei Wen; Huanzhou Yu; Angel R. Pineda; Garry E. Gold; Michael Markl; Norbert J. Pelc

This work describes a new approach to multipoint Dixon fat–water separation that is amenable to pulse sequences that require short echo time (TE) increments, such as steady‐state free precession (SSFP) and fast spin‐echo (FSE) imaging. Using an iterative linear least‐squares method that decomposes water and fat images from source images acquired at short TE increments, images with a high signal‐to‐noise ratio (SNR) and uniform separation of water and fat are obtained. This algorithm extends to multicoil reconstruction with minimal additional complexity. Examples of single‐ and multicoil fat–water decompositions are shown from source images acquired at both 1.5T and 3.0T. Examples in the knee, ankle, pelvis, abdomen, and heart are shown, using FSE, SSFP, and spoiled gradient‐echo (SPGR) pulse sequences. The algorithm was applied to systems with multiple chemical species, and an example of water–fat–silicone separation is shown. An analysis of the noise performance of this method is described, and methods to improve noise performance through multicoil acquisition and field map smoothing are discussed. Magn Reson Med 51:35–45, 2004.


Journal of Magnetic Resonance Imaging | 2007

Water–fat separation with IDEAL gradient‐echo imaging

Scott B. Reeder; Charles A. McKenzie; Angel R. Pineda; Huanzhou Yu; Ann Shimakawa; Anja C. S. Brau; Brian A. Hargreaves; Garry E. Gold; Jean H. Brittain

To combine gradient‐echo (GRE) imaging with a multipoint water–fat separation method known as “iterative decomposition of water and fat with echo asymmetry and least squares estimation” (IDEAL) for uniform water–fat separation. Robust fat suppression is necessary for many GRE imaging applications; unfortunately, uniform fat suppression is challenging in the presence of B0 inhomogeneities. These challenges are addressed with the IDEAL technique.


Radiographics | 2011

Articular Cartilage in the Knee: Current MR Imaging Techniques and Applications in Clinical Practice and Research

Michel D. Crema; Frank W. Roemer; M.D. Marra; Deborah Burstein; Garry E. Gold; F. Eckstein; Thomas Baum; Timothy J. Mosher; John A. Carrino; Ali Guermazi

Magnetic resonance (MR) imaging is the most important imaging modality for the evaluation of traumatic or degenerative cartilaginous lesions in the knee. It is a powerful noninvasive tool for detecting such lesions and monitoring the effects of pharmacologic and surgical therapy. The specific MR imaging techniques used for these purposes can be divided into two broad categories according to their usefulness for morphologic or compositional evaluation. To assess the structure of knee cartilage, standard spin-echo (SE) and gradient-recalled echo (GRE) sequences, fast SE sequences, and three-dimensional SE and GRE sequences are available. These techniques allow the detection of morphologic defects in the articular cartilage of the knee and are commonly used in research for semiquantitative and quantitative assessments of cartilage. To evaluate the collagen network and proteoglycan content in the knee cartilage matrix, compositional assessment techniques such as T2 mapping, delayed gadolinium-enhanced MR imaging of cartilage (or dGEMRIC), T1ρ imaging, sodium imaging, and diffusion-weighted imaging are available. These techniques may be used in various combinations and at various magnetic field strengths in clinical and research settings to improve the characterization of changes in cartilage.


Magnetic Resonance in Medicine | 2009

SEMAC: Slice Encoding for Metal Artifact Correction in MRI

Wenmiao Lu; Kim Butts Pauly; Garry E. Gold; John M. Pauly; Brian A. Hargreaves

Magnetic resonance imaging (MRI) near metallic implants remains an unmet need because of severe artifacts, which mainly stem from large metal‐induced field inhomogeneities. This work addresses MRI near metallic implants with an innovative imaging technique called “Slice Encoding for Metal Artifact Correction” (SEMAC). The SEMAC technique corrects metal artifacts via robust encoding of each excited slice against metal‐induced field inhomogeneities. The robust slice encoding is achieved by extending a view‐angle‐tilting (VAT) spin‐echo sequence with additional z‐phase encoding. Although the VAT compensation gradient suppresses most in‐plane distortions, the z‐phase encoding fully resolves distorted excitation profiles that cause through‐plane distortions. By positioning all spins in a region‐of‐interest to their actual spatial locations, the through‐plane distortions can be corrected by summing up the resolved spins in each voxel. The SEMAC technique does not require additional hardware and can be deployed to the large installed base of whole‐body MRI systems. The efficacy of the SEMAC technique in eliminating metal‐induced distortions with feasible scan times is validated in phantom and in vivo spine and knee studies. Magn Reson Med 62:66–76, 2009.


American Journal of Roentgenology | 2011

Metal-Induced Artifacts in MRI

Brian A. Hargreaves; Pauline W. Worters; Kim Butts Pauly; John M. Pauly; Kevin M. Koch; Garry E. Gold; Musculoskeletal Imaging

OBJECTIVE The purpose of this article is to review some of the basic principles of imaging and how metal-induced susceptibility artifacts originate in MR images. We will describe common ways to reduce or modify artifacts using readily available imaging techniques, and we will discuss some advanced methods to correct readout-direction and slice-direction artifacts. CONCLUSION The presence of metallic implants in MRI can cause substantial image artifacts, including signal loss, failure of fat suppression, geometric distortion, and bright pile-up artifacts. These cause large resonant frequency changes and failure of many MRI mechanisms. Careful parameter and pulse sequence selections can avoid or reduce artifacts, although more advanced imaging methods offer further imaging improvements.


Radiology | 2009

Knee Joint: Comprehensive Assessment with 3D Isotropic Resolution Fast Spin-Echo MR Imaging—Diagnostic Performance Compared with That of Conventional MR Imaging at 3.0 T

Richard Kijowski; Kirkland W. Davis; Michael A. Woods; Mary J. Lindstrom; Arthur A. De Smet; Garry E. Gold; Reed F. Busse

PURPOSE To determine whether a three-dimensional isotropic resolution fast spin-echo sequence (FSE-Cube) has similar diagnostic performance as a routine magnetic resonance (MR) imaging protocol for evaluating the cartilage, ligaments, menisci, and osseous structures of the knee joint in symptomatic patients at 3.0 T. MATERIALS AND METHODS This prospective, HIPAA-compliant, institutional review board-approved study was performed with a waiver of informed consent. FSE-Cube was added to the routine 3.0-T MR imaging protocol performed in 100 symptomatic patients (54 male patients with a median age of 32 years and 46 female patients with a median age of 33 years) who subsequently underwent arthroscopic knee surgery. All MR imaging studies were independently reviewed twice by two musculoskeletal radiologists. During the first review, the routine MR imaging protocol was used to detect cartilage lesions, ligament tears, meniscal tears, and bone marrow edema lesions. During the second review, FSE-Cube with multiplanar reformations was used to detect these joint abnormalities. With arthroscopic results as the reference standard, the sensitivity and specificity of FSE-Cube and the routine MR imaging protocol in the detection of cartilage lesions, anterior cruciate ligament tears, and meniscal tears were calculated. Permutation tests were used to compare sensitivity and specificity values. RESULTS FSE-Cube had significantly higher sensitivity (P = .039) but significantly lower specificity (P = .003) than the routine MR imaging protocol for detecting cartilage lesions. There were no significant differences (P = .183-.999) in sensitivity and specificity between FSE-Cube and the routine MR imaging protocol in the detection of anterior cruciate ligament tears, medial meniscal tears, or lateral meniscal tears. FSE-Cube depicted 96.2% of medial collateral ligament tears, 100% of lateral collateral ligament tears, and 85.3% of bone marrow edema lesions identified on images obtained with the routine MR imaging protocol. CONCLUSION FSE-Cube has similar diagnostic performance as a routine MR imaging protocol for detecting cartilage lesions, cruciate ligament tears, collateral ligament tears, meniscal tears, and bone marrow edema lesions within the knee joint at 3.0 T.


American Journal of Roentgenology | 2007

Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA) : Initial experience

Garry E. Gold; Reed F. Busse; Carol Beehler; Eric T. Han; Anja C. S. Brau; Philip J. Beatty; Christopher F. Beaulieu

OBJECTIVE The purpose of our study was to prospectively compare a recently developed method of isotropic 3D fast spin-echo (FSE) with extended echo-train acquisition (XETA) with 2D FSE and 2D fast recovery FSE (FRFSE) for MRI of the knee. SUBJECTS AND METHODS Institutional review board approval, Health Insurance Portability and Accounting Act (HIPAA) compliance, and informed consent were obtained. We studied 10 healthy volunteers and one volunteer with knee pain using 3D FSE XETA, 2D FSE, and 2D FRFSE. Images were obtained both with and without fat suppression. Cartilage and muscle signal-to-noise ratio (SNR) and cartilage-fluid contrast-to-noise ratio (CNR) were compared using a Students t test. We also compared reformations of 3D FSE XETA with 2D FSE images directly acquired in the axial plane. RESULTS Cartilage SNR was higher with 3D FSE XETA (56.8 +/- 9 [SD]) compared with the 2D FSE (45.8 +/- 8, p < 0.01) and 2D FRFSE (32.5 +/- 5.3, p < 0.01). Muscle SNR was significantly higher with 3D FSE XETA (52.1 +/- 4.3) than 2D FSE (45.2 +/- 9, p < 0.01) and 2D FRFSE (23.6 +/- 6.2, p < 0.01). Fluid SNR was significantly higher for 2D FSE (144.9 +/- 33) than 3D FSE XETA (104.7 +/- 18, p < 0.01). Compared with 2D FSE and 2D FRFSE, 3D FSE XETA had lower cartilage-fluid CNR due to higher cartilage SNR (p < 0.01). Three-dimensional FSE XETA acquired volumetric data sets with isotropic resolution. Reformatted images in the axial plane were similar to axial 2D FSE acquisitions but with thinner slices. CONCLUSION Three-dimensional FSE XETA acquires high-resolution (approximately 0.7 mm) isotropic data with intermediate and T2-weighting that may be reformatted in arbitrary planes. Three-dimensional FSE XETA is a promising technique for MRI of the knee.


Journal of Magnetic Resonance Imaging | 2007

Image-based musculoskeletal modeling: applications, advances, and future opportunities.

Silvia S. Blemker; Deanna S. Asakawa; Garry E. Gold; Scott L. Delp

Computer models of the musculoskeletal system are broadly used to study the mechanisms of musculoskeletal disorders and to simulate surgical treatments. Musculoskeletal models have historically been created based on data derived in anatomical and biomechanical studies of cadaveric specimens. MRI offers an abundance of novel methods for acquisition of data from living subjects and is revolutionizing the field of musculoskeletal modeling. The need to create accurate, individualized models of the musculoskeletal system is driving advances in MRI techniques including static imaging, dynamic imaging, diffusion imaging, body imaging, pulse‐sequence design, and coil design. These techniques apply to imaging musculoskeletal anatomy, muscle architecture, joint motions, muscle moment arms, and muscle tissue deformations. Further advancements in image‐based musculoskeletal modeling will expand the accuracy and utility of models used to study musculoskeletal and neuromuscular impairments. J. Magn. Reson. Imaging 2007.


Clinical Orthopaedics and Related Research | 2001

Magnetic Resonance Imaging of Articular Cartilage

Michael P. Recht; Vladimir Bobic; Deborah Burstein; David G. Disler; Garry E. Gold; Martha L. Gray; Josef Kramer; Philipp Lang; Thomas R. McCauley; Carl S. Winalski

Magnetic resonance imaging is the optimal modality for assessing articular cartilage because of superior soft tissue contrast, direct visualization of articular cartilage, and multiplanar capability. Despite these advantages, there has been disagreement as to the efficacy of magnetic resonance imaging of articular cartilage. The reason for this controversy is multifactorial but in part is attributable to the lack of the use of optimized pulse sequences for articular cartilage. The current authors will review the current state of the art of magnetic resonance imaging of articular cartilage and cartilage repair procedures, discuss future new directions in imaging strategies and methods being developed to measure cartilage thickness and volume measurements, and propose a magnetic resonance imaging protocol to evaluate cartilage that is achievable on most magnetic resonance scanners, vendor independent, practical (time and cost efficient), and accepted and used by a majority of musculoskeletal radiologists.

Collaboration


Dive into the Garry E. Gold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary S. Beaupre

VA Palo Alto Healthcare System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott B. Reeder

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge