Garving K. Luli
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Garving K. Luli.
Journal of the American Mathematical Society | 2013
Charles Fefferman; Arie Israel; Garving K. Luli
Let L(R) be the Sobolev space of functions with mth derivatives lying in L(R). Assume that n < p < ∞. For E ⊂ R, let L(E) denote the space of restrictions to E of functions in L(R). We show that there exists a bounded linear map T : Lm,p(E)→ L(R) such that, for any f ∈ L(E), we have Tf = f on E. We also give a formula for the order of magnitude of ‖f‖Lm,p(E) for a given f : E→ R when E is finite.
Revista Matematica Iberoamericana | 2017
Charles Fefferman; Arie Israel; Garving K. Luli
We prove a finiteness principle for interpolation of data by nonnegative Cm functions. Our result raises the hope that one can start to understand constrained interpolation problems in which e.g. the interpolating function F is required to be nonnegative.
Geometric and Functional Analysis | 2016
Charles Fefferman; Arie Israel; Garving K. Luli
In this paper we prove finiteness principles for
Journal of Mathematical Physics | 2016
Jan Burczak; Rafael Granero-Belinchón; Garving K. Luli
Revista Matematica Iberoamericana | 2014
Charles Fefferman; Garving K. Luli
{C^m{({\mathbb{R}^n},{\mathbb{R}^D)}}}
Advances in Mathematics | 2010
Garving K. Luli
Journal of Mathematical Fluid Mechanics | 2007
Robert Finn; Garving K. Luli
Cm(Rn,RD) and
Revista Matematica Iberoamericana | 2016
Charles Fefferman; Arie Israel; Garving K. Luli
Revista Matematica Iberoamericana | 2014
Charles Fefferman; Arie Israel; Garving K. Luli
{C^{m-1,1}(\mathbb{R}^n,\mathbb{R}^D)}
Nonlinearity | 2012
Charles Fefferman; Garving K. Luli; Jose L. Rodrigo