Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary A. Koretzky is active.

Publication


Featured researches published by Gary A. Koretzky.


Annual Review of Immunology | 2009

T Cell Activation

Jennifer E. Smith-Garvin; Gary A. Koretzky; Martha S. Jordan

This year marks the 25th anniversary of the first Annual Review of Immunology article to describe features of the T cell antigen receptor (TCR). In celebration of this anniversary, we begin with a brief introduction outlining the chronology of the earliest studies that established the basic paradigm for how the engaged TCR transduces its signals. This review continues with a description of the current state of our understanding of TCR signaling, as well as a summary of recent findings examining other key aspects of T cell activation, including cross talk between the TCR and integrins, the role of costimulatory molecules, and how signals may negatively regulate T cell function.Acronyms and DefinitionsAdapter protein: cellular protein that functions to bridge molecular interactions via characteristic domains able to mediate protein/protein or protein/lipid interactions Costimulation: signals delivered to T cells by cell surface receptors other than the TCR itself that potentiate T cell activation cSMAC: central supramolecular activation cluster Immunoreceptor tyrosine-based activation motif (ITAM): a short peptide sequence in the cytoplasmic tails of key surface receptors on hematopoietic cells that is characterized by tyrosine residues that are phosphorylated by Src family PTKs, enabling the ITAM to recruit activated Syk family kinases Inside-out signaling: signals initiated by engagement of immunoreceptors that lead to conformational changes and clustering of integrins, thereby increasing the affinity and avidity of the integrins for their ligands NFAT: nuclear factor of activated T cells PI3K: phosphoinositide 3-kinase PKC: protein kinase C PLC: phospholipase C pMHC: peptide major histocompatibility complex (MHC) complex pSMAC: peripheral supramolecular activation cluster PTK: protein tyrosine kinase Signal transduction: biochemical events linking surface receptor engagement to cellular responses TCR: T cell antigen receptor


Nature | 2001

CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling.

Junko Irie-Sasaki; Takehiko Sasaki; Wataru Matsumoto; Anne Opavsky; Mary Cheng; G. Grant Welstead; Emily K. Griffiths; Connie Krawczyk; Christopher D. Richardson; Karen Aitken; Norman N. Iscove; Gary A. Koretzky; Pauline Johnson; Peter Liu; David M. Rothstein; Josef M. Penninger

The regulation of tyrosine phosphorylation and associated signalling through antigen, growth-factor and cytokine receptors is mediated by the reciprocal activities of protein tyrosine kinases and protein tyrosine phosphatases (PTPases). The transmembrane PTPase CD45 is a key regulator of antigen receptor signalling in T and B cells. Src-family kinases have been identified as primary molecular targets for CD45 (ref. 4). However, CD45 is highly expressed in all haematopoietic lineages at all stages of development, indicating that CD45 could regulate other cell types and might act on additional substrates. Here we show that CD45 suppresses JAK (Janus kinase) kinases and negatively regulates cytokine receptor signalling. Targeted disruption of the cd45 gene leads to enhanced cytokine and interferon-receptor-mediated activation of JAKs and STAT (signal transducer and activators of transcription) proteins. In vitro , CD45 directly dephosphorylates and binds to JAKs. Functionally, CD45 negatively regulates interleukin-3-mediated cellular proliferation, erythropoietin-dependent haematopoieisis and antiviral responses in vitro and in vivo. Our data identify an unexpected and novel function for CD45 as a haematopoietic JAK phosphatase that negatively regulates cytokine receptor signalling.


Immunity | 1996

Vav and SLP-76 Interact and Functionally Cooperate in IL-2 Gene Activation

Jun Wu; David G. Motto; Gary A. Koretzky; Arthur Weiss

T cell antigen receptor (TCR) stimulation induces tyrosine phosphorylation of many intracellular proteins, including the proto-oncogene Vav, which is expressed exclusively in hematopoietic and trophoblast cells. Vav is critical for lymphocyte development and activation. Overexpression of Vav in Jurkat T cells leads to potentiation of TCR-mediated IL-2 gene activation. However, the biochemical function of Vav is unknown. Here, we demonstrate that the major induced tyrosine phosphoprotein associated with Vav is the hematopoietic cell-specific SLP-76. The Vav SH2 domain is required for this interaction and for TCR-mediated Vav tyrosine phosphorylation. Similar to Vav, overexpression of SLP-76 markedly potentiates TCR-mediated NF-AT and IL-2 gene activation. Furthermore, overexpression of both Vav and SLP-76 synergistically induces basal and TCR-stimulated NF-AT activation. These results suggest that a signaling complex containing Vav and SLP-76 plays an important role in lymphocyte activation.


Nature Medicine | 2005

Regulation of NKT cell development by SAP, the protein defective in XLP

Kim E. Nichols; Jamie Hom; Shunyou Gong; Arupa Ganguly; Cindy S. Ma; Jennifer L. Cannons; Stuart G. Tangye; Pamela L. Schwartzberg; Gary A. Koretzky; Paul L. Stein

The adaptor molecule SAP is expressed in T lymphocytes and natural killer (NK) cells, where it regulates cytokine production and cytotoxicity. Here, we show that SAP, encoded by the SH2D1A gene locus, also has a crucial role during the development of NKT cells, a lymphocyte subset with immunoregulatory functions in response to infection, cancer and autoimmune disease. Following stimulation with the NKT cell–specific agonist α-galactosyl ceramide (αGC), Sh2d1a−/− splenocytes did not produce cytokines or activate other lymphoid lineages in an NKT cell–dependent manner. While evaluating the abnormalities in αGC-induced immune responses, we observed that Sh2d1a−/− animals lacked NKT cells in the thymus and peripheral organs. The defect in NKT cell ontogeny was hematopoietic cell autonomous and could be rescued by reconstitution of SAP expression within Sh2d1a−/− bone marrow cells. Seventeen individuals with X-linked lymphoproliferative disease (XLP), who harbored germline mutations in SH2D1A, also lacked NKT cells. Furthermore, a female XLP carrier showed completely skewed X chromosome inactivation within NKT cells, but not T or B cells. Thus, SAP is a crucial regulator of NKT cell ontogeny in humans and in mice. The absence of NKT cells may contribute to the phenotypes of SAP deficiency, including abnormal antiviral and antitumor immunity and hypogammaglobulinemia.


Current Biology | 1999

The hematopoietic-specific adaptor protein Gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors

Stanley K. Liu; Nan Fang; Gary A. Koretzky; C. Jane McGlade

BACKGROUND The adaptor protein Gads is a Grb2-related protein originally identified on the basis of its interaction with the tyrosine-phosphorylated form of the docking protein Shc. Gads protein expression is restricted to hematopoietic tissues and cell lines. Gads contains a Src homology 2 (SH2) domain, which has previously been shown to have a similar binding specificity to that of Grb2. Gads also possesses two SH3 domains, but these have a distinct binding specificity to those of Grb2, as Gads does not bind to known Grb2 SH3 domain targets. Here, we investigated whether Gads is involved in T-cell signaling. RESULTS We found that Gads is highly expressed in T cells and that the SLP-76 adaptor protein is a major Gads-associated protein in vivo. The constitutive interaction between Gads and SLP-76 was mediated by the carboxy-terminal SH3 domain of Gads and a 20 amino-acid proline-rich region in SLP-76. Gads also coimmunoprecipitated the tyrosine-phosphorylated form of the linker for activated T cells (LAT) adaptor protein following cross-linking of the T-cell receptor; this interaction was mediated by the Gads SH2 domain. Overexpression of Gads and SLP-76 resulted in a synergistic augmentation of T-cell signaling, as measured by activation of nuclear factor of activated T cells (NFAT), and this cooperation required a functional Gads SH2 domain. CONCLUSIONS These results demonstrate that Gads plays an important role in T-cell signaling via its association with SLP-76 and LAT. Gads may promote cross-talk between the LAT and SLP-76 signaling complexes, thereby coupling membrane-proximal events to downstream signaling pathways.


Blood | 2010

Platelets regulate lymphatic vascular development through CLEC-2–SLP-76 signaling

Cara C. Bertozzi; Alec A. Schmaier; Patricia Mericko; Paul R. Hess; Zhiying Zou; Mei Chen; Chiu-Yu Chen; Bin Xu; MinMin Lu; Diane Zhou; Eric Sebzda; Matthew T. Santore; Demetri J. Merianos; Matthias Stadtfeld; Alan W. Flake; Thomas Graf; Radek C. Skoda; Jonathan S. Maltzman; Gary A. Koretzky; Mark L. Kahn

Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.


Nature Immunology | 2003

Adaptors as central mediators of signal transduction in immune cells

Martha S. Jordan; Andrew L. Singer; Gary A. Koretzky

Adaptors are molecular scaffolds that recruit effectors, which are critical for immune cell activation. Recent work has underscored the requirement for adaptors in propagating stimulatory signals as well as their ability to inhibit immune cell function. The mechanisms by which adaptors function rely not only on the intermolecular interactions they mediate, but also on where they are localized within the cell. The use of sophisticated genetic, biochemical, cellular and imaging approaches has provided important new insights into the biology of adaptor protein function. Here we focus on T lymphocytes as a model to illustrate the critical roles adaptors play as regulators of cellular activation.


European Journal of Immunology | 1999

Interaction of SLP adaptors with the SH2 domain of Tec family kinases

Yu-Wen Su; Yong Zhang; Jutta Schweikert; Gary A. Koretzky; Michael Reth; Jürgen Wienands

Activation of lymphocytes through their antigen receptors leads to mobilization of intracellular Ca2+ ions. This process requires expression of SLP adaptors and involves phosphorylation of phospholipase C‐γ isoforms by the Tec‐related protein tyrosine kinase Btk in B cells and Itk in T cells. The SH2 domain of Btk and Itk is essential for phospholipase C‐γ phosphorylation and mutations in this domain lead to the X‐linked agammaglobulinemia immuno deficiency in humans. Here we show that, in contrast to SH2 domains from other signaling proteins, the Btk and Itk SH2 domains exhibit a restricted binding specificity. They bind selectively to tyrosine‐phosphorylated SLP‐65 and SLP‐76 in activated B and T cells, respectively. Our findings suggest that Btk / Itk and phospholipase C‐γ both bind via their SH2 domain to phosphorylated SLP adaptors, and that this association is required for the activation of phospholipase C‐γ.


Journal of Biological Chemistry | 1997

Two NFAT Transcription Factor Binding Sites Participate in the Regulation of CD95 (Fas) Ligand Expression in Activated Human T Cells

Kevin M. Latinis; Lyse A. Norian; Steve L. Eliason; Gary A. Koretzky

Antigen receptor engagement on T lymphocytes activates transcription factors important for stimulating cytokine gene expression. This is critical for clonal expansion of antigen-specific T cells and propagation of immune responses. Additionally, under some conditions antigen receptor stimulation initiates apoptosis of T lymphocytes through the induced expression of CD95 ligand and its receptor. Here we demonstrate that the transcription factor, NFAT, which is critical for the inducible expression of many cytokine genes, also plays a critical role in the regulation of T cell receptor-mediated CD95 ligand expression. Two sites within the CD95 ligand promoter, identified through DNase I footprinting, bind NFAT proteins from nuclear extracts of activated T cells. Although both sites appear important for optimal expression of CD95 ligand in activated T cells, mutational analysis suggests that the distal NFAT site plays a more significant role. Furthermore, these sites do not appear to be required for constitutive CD95 ligand expression in Sertoli cells.


Molecular and Cellular Biology | 1998

Stress-Induced Fas Ligand Expression in T Cells Is Mediated through a MEK Kinase 1-Regulated Response Element in the Fas Ligand Promoter

Mary Faris; Kevin M. Latinis; Stephan J. Kempiak; Gary A. Koretzky; Andre E. Nel

ABSTRACT T lymphocytes undergo apoptosis in response to a variety of stimuli, including exposure to UV radiation and γ-irradiation. While the mechanism by which stress stimuli induce apoptosis is not well understood, we have previously shown that the induction of Fas ligand (FasL) gene expression by environmental stress stimuli is dependent on c-Jun N-terminal kinase (JNK) activation. Using inducible dominant-active (DA) JNK kinase kinase (MEKK1) expression in Jurkat cells, we map a specific MEKK1-regulated response element to positions −338 to −316 of the Fas ligand (FasL) promoter. Mutation of that response element abrogated MEKK1-mediated FasL promoter activation and interfered in stress-induced activation of that promoter. Using electrophoretic mobility shift assays, we demonstrate that activator protein 1 (AP-1) binding proteins, namely, activating transcription factor 2 (ATF2) and c-Jun, bind to the MEKK1 response element. Transient transfection of interfering c-Jun and ATF2 mutants, which lack the consensus JNK phosphorylation sites, abrogated the transcriptional activation of the FasL promoter, demonstrating the involvement of these transcription factors in the regulation of the FasL promoter. Taken together, our data indicate that MEKK1 and transcription factors regulated by the JNK pathway play a role in committing lymphocytes to undergo apoptosis by inducing FasL expression via a novel response element in the promoter of that gene.

Collaboration


Dive into the Gary A. Koretzky's collaboration.

Top Co-Authors

Avatar

Martha S. Jordan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James L. Clements

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Taku Kambayashi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim E. Nichols

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Jennifer N. Wu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jiyeon S. Kim

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Andrew L. Singer

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge