Gary A. Molander
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gary A. Molander.
Journal of the American Chemical Society | 2015
Osvaldo Gutierrez; John C. Tellis; David N. Primer; Gary A. Molander; Marisa C. Kozlowski
The cross-coupling of sp3-hybridized organoboron reagents via photoredox/nickel dual catalysis represents a new paradigm of reactivity for engaging alkylmetallic reagents in transition-metal-catalyzed processes. Reported here is an investigation into the mechanistic details of this important transformation using density functional theory. Calculations bring to light a new reaction pathway involving an alkylnickel(I) complex generated by addition of an alkyl radical to Ni(0) that is likely to operate simultaneously with the previously proposed mechanism. Analysis of the enantioselective variant of the transformation reveals an unexpected manifold for stereoinduction involving dynamic kinetic resolution (DKR) of a Ni(III) intermediate wherein the stereodetermining step is reductive elimination. Furthermore, calculations suggest that the DKR-based stereoinduction manifold may be responsible for stereoselectivity observed in numerous other stereoconvergent Ni-catalyzed cross-couplings and reductive couplings.
Accounts of Chemical Research | 2016
John C. Tellis; Christopher B. Kelly; David N. Primer; Matthieu Jouffroy; Niki R. Patel; Gary A. Molander
Conspectus The important role of transition metal-catalyzed cross-coupling in expanding the frontiers of accessible chemical territory is unquestionable. Despite empowering chemists with Herculean capabilities in complex molecule construction, contemporary protocols are not without their Achilles’ heel: Csp3–Csp2/sp3 coupling. The underlying challenge in sp3 cross-couplings is 2-fold: (i) methods employing conventional, bench-stable precursors are universally reliant on extreme reaction conditions because of the high activation barrier of transmetalation; (ii) circumvention of this barrier invariably relies on use of more reactive precursors, thereby sacrificing functional group tolerance, operational simplicity, and broad applicability. Despite the ubiquity of this problem, the nature of the transmetalation step has remained unchanged from the seminal reports of Negishi, Suzuki, Kumada, and Stille, thus suggesting that the challenges in Csp3–Csp2/sp3 coupling result from inherent mechanistic constraints in the traditional cross-coupling paradigm. Rather than submitting to the limitations of this conventional approach, we envisioned that a process rooted in single-electron reactivity could furnish the same key metalated intermediate posited in two-electron transmetalation, while demonstrating entirely complementary reactivity patterns. Inspired by literature reports on the susceptibility of organoboron reagents toward photochemical, single-electron oxidative fragmentation, realization of a conceptually novel open shell transmetalation framework was achieved in the facile coupling of benzylic trifluoroborates with aryl halides via cooperative visible-light activated photoredox and Ni cross-coupling catalysis. Following this seminal study, we disclosed a suite of protocols for the cross-coupling of secondary alkyl, α-alkoxy, α-amino, and α-trifluoromethylbenzyltrifluoroborates. Furthermore, the selective cross-coupling of Csp3 organoboron moieties in the presence of Csp2 organoboron motifs was also demonstrated, highlighting the nuances of this approach to transmetalation. Computational modeling of the reaction mechanism uncovered useful details about the intermediates and transition-state structures involved in the nickel catalytic cycle. Most notably, a unique dynamic kinetic resolution process, characterized by radical homolysis/recombination equilibrium of a NiIII intermediate, was discovered. This process was ultimately found to be responsible for stereoselectivity in an enantioselective variant of these cross-couplings. Prompted by the intrinsic limitations of organotrifluoroborates, we sought other radical feedstocks and quickly identified alkylbis(catecholato)silicates as viable radical precursors for Ni/photoredox dual catalysis. These hypervalent silicate species have several notable benefits, including more favorable redox potentials that allow extension to primary alkyl systems incorporating unprotected amines as well as compatibility with less expensive Ru-based photocatalysts. Additionally, these reagents exhibit an amenability to alkenyl halide cross-coupling while simultaneously expanding the aryl halide scope. In the process of exploring these reagents, we serendipitously discovered a method to effect thioetherification of aryl halides via a H atom transfer mechanism. This latter discovery emphasizes that this robust cross-coupling paradigm is “blind” to the origins of the radical, opening opportunities for a wealth of new discoveries. Taken together, our studies in the area of photoredox/nickel dual catalysis have validated single-electron transmetalation as a powerful platform for enabling conventionally challenging Csp3–Csp2 cross-couplings. More broadly, these findings represent the power of rational design in catalysis and the strategic use of mechanistic knowledge and manipulation for the development of new synthetic methods.
Journal of the American Chemical Society | 2015
David N. Primer; Idris Karakaya; John C. Tellis; Gary A. Molander
Single-electron-mediated alkyl transfer affords a novel mechanism for transmetalation, enabling cross-coupling under mild conditions. Here, general conditions are reported for cross-coupling of secondary alkyltrifluoroborates with an array of aryl bromides mediated by an Ir photoredox catalyst and a Ni cross-coupling catalyst.
Journal of the American Chemical Society | 2016
Matthieu Jouffroy; David N. Primer; Gary A. Molander
Single-electron transmetalation is recognized as an enabling technology for the mild transfer of alkyl groups to transition metal catalysts in cross-coupling reactions. Hypercoordinate silicates represent a new and improved class of radical precursors because of their low oxidation potentials and the innocuous byproducts generated upon oxidation. Herein, we report the cross-coupling of secondary and primary ammonium alkylsilicates with (hetero)aryl bromides in good to excellent yields. The base-free conditions have exceptional protic group tolerance on both partners, permitting the cross-coupling of unprotected primary and secondary amines.
Journal of the American Chemical Society | 2016
Drew R. Heitz; John C. Tellis; Gary A. Molander
An iridium photocatalyst and visible light facilitate a room temperature, nickel-catalyzed coupling of (hetero)aryl bromides with activated α-heterosubstituted or benzylic C(sp3)–H bonds. Mechanistic investigations on this unprecedented transformation have uncovered the possibility of an unexpected mechanism hypothesized to involve a Ni–Br homolysis event from an excited-state nickel complex. The resultant bromine radical is thought to abstract weak C(sp3)–H bonds to generate reactive alkyl radicals that can be engaged in Ni-catalyzed arylation. Evidence suggests that the iridium photocatalyst facilitates nickel excitation and bromine radical generation via triplet–triplet energy transfer.
Journal of Organic Chemistry | 2015
Gary A. Molander
Over the past two decades, organotrifluoroborates have evolved from being chemical curiosities to important reagents for the elaboration of organic molecules. Aside from their often-unique reactivity patterns, favorable features of these reagents include their ease of preparation/isolation, reliable crystallinity, enhanced stability, and monomeric structure. Currently >600 structurally diverse reagents of this class are commercially available, and >850 such compounds have been reported from the authors laboratory. The organotrifluoroborates can be utilized as shelf-stable precursors to a variety of end products through simple functional group transformations and have also been employed as partners in cross-coupling reactions between aromatic, alkenyl, alkynyl, and alkyl substrates in library or individual formats. Within the realm of cross-coupling reactions, organotrifluoroborates provide a practical entry to substructural entities not readily accessed using other organometallic reagents, and most recently, the development of a novel mechanistic paradigm for cross-coupling promises to expand the range of accessible cross-coupling partners even further to include both single- and two-electron processes.
Organic Letters | 2015
Idris Karakaya; David N. Primer; Gary A. Molander
Single-electron transmetalation has emerged as an enabling paradigm for the cross-coupling of Csp3 hybridized organotrifluoroborates. Cross-coupling of α-alkoxymethyltrifluoroborates with aryl and heteroaryl bromides has been demonstrated by employing dual catalysis with a combination of an iridium photoredox catalyst and a Ni cross-coupling catalyst. The resulting method enables the alkoxymethylation of diverse (hetero)arenes under mild, room-temperature conditions.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Yohei Yamashita; John C. Tellis; Gary A. Molander
Significance Efficient assembly of small-molecule scaffolds is among the most fundamental goals of organic synthesis. Iterative synthesis, wherein predefined building blocks are unified in an “assembly line” fashion using only a small number of reaction types, is an attractive means for achieving this ideal. These methods are particularly well-suited for applications in drug discovery, agrochemistry, and materials science, where rapid generation of structural diversity is a central objective. A strategy is described in which two reactive sites are differentiated by their preferred mode of reactivity (single vs. two electron). This unique platform allows discrimination between the two sites without artificial blocking of reactivity, streamlining the iterative process by removing the need for deprotection or interconversion of functional groups. Orthogonal reactivity modes offer substantial opportunities for rapid construction of complex small molecules. However, most strategies for imparting orthogonality to cross-coupling reactions rely on differential protection of reactive sites, greatly reducing both atom and step economies. Reported here is a strategy for orthogonal cross-coupling wherein a mechanistically distinct activation mode for transmetalation of sp3-hybridized organoboron reagents enables C-C bond formation in the presence of various protected and unprotected sp2-hybridized organoborons. This manifold has the potential for broad application, because orthogonality is inherent to the activation mode itself. The diversification potential of this platform is shown in the rapid elaboration of a trifunctional lynchpin through various transition metal-catalyzed processes without nonproductive deprotection or functional group manipulation steps.
Organic Letters | 2016
Matthieu Jouffroy; Christopher B. Kelly; Gary A. Molander
Hypervalent alkylsilicates represent new and readily accessible precursors for the generation of alkyl radicals under photoredox conditions. Alkyl radicals generated from such silicates serve as effective hydrogen atom abstractors from thiols, furnishing thiyl radicals. The reactive sulfur species generated in this manner can be funneled into a nickel-mediated cross-coupling cycle employing aromatic bromides to furnish thioethers. The serendipitous discovery of this reaction and its utilization for the thioetherification of various aryl and heteroaryl bromides with a diverse array of thiols is described. The S–H selective H atom abstraction event enables a wide range of functional groups, including those bearing protic moieties, to be tolerated.
ACS Catalysis | 2017
Jennifer K. Matsui; Simon B. Lang; Drew R. Heitz; Gary A. Molander
Photoredox catalysis has experienced a revitalized interest from the synthesis community during the past decade. For example, photoredox/Ni dual catalysis protocols have been developed to overcome several inherent limitations of palladium-catalyzed cross-couplings by invoking a single-electron transmetalation pathway. This Perspective highlights advances made by our laboratory since the inception of the photoredox/Ni cross-coupling of benzyltrifluoroborates with aryl bromides. In addition to broadening the scope of trifluoroborate coupling partners, research using readily oxidized hypervalent silicates as radical precursors that demonstrate functional group compatibility is highlighted. The pursuit of electrophilic coupling partners beyond (hetero)aryl bromides has also led to the incorporation of several new classes of C(sp2)-hybridized substrates into light-mediated cross-coupling. Advances to expand the radical toolbox by utilizing feedstock chemicals (e.g., aldehydes) to access radicals that were previously inaccessible from trifluoroborates and silicates are also emphasized. Additionally, several organic photocatalysts have been investigated as replacements for their expensive iridium- and ruthenium-based counterparts. Lastly, the net C–H functionalization of the radical partner in an effort to improve atom economy is presented. An underlying theme in all of these studies is the value of generating radicals in a catalytic manner, rather than stoichiometrically.