Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary B. Braun is active.

Publication


Featured researches published by Gary B. Braun.


Nano Letters | 2014

Modular Plasmonic Nanocarriers for Efficient and Targeted Delivery of Cancer-Therapeutic siRNA

Xiao Huang; Alessia Pallaoro; Gary B. Braun; Demosthenes P. Morales; Maria O. Ogunyankin; Joseph A. Zasadzinski; Norbert O. Reich

We have combined a versatile and powerful route to deliver nucleic acids with peptide-based cell-specific targeting. siRNA targeting the polo-like kinase gene is in clinical trials for cancer treatment, and here we deliver this RNA selectively to cancer cells displaying the neuropilin-1 epitope using gold nanoshells. Release of the siRNA from the nanoparticles results from irradiation with a pulsed near-infrared laser, which also provides efficient endosomal escape within the cell. As a result, our approach requires 10-fold less material than standard nucleic acid transduction materials and is significantly more efficient than other particle-based methods. We also describe a particle–nucleic acid design that does not rely on modified RNA, thereby making the preparation of these materials more efficient and much less expensive. These improvements, when combined with control over when and where the siRNA is released, could provide the basis for diverse cell biological studies.


Cancer Research | 2013

Application of a Proapoptotic Peptide to Intratumorally Spreading Cancer Therapy

Renwei Chen; Gary B. Braun; Xiuquan Luo; Kazuki N. Sugahara; Tambet Teesalu; Erkki Ruoslahti

Bit1 is a proapoptotic mitochondrial protein associated with anoikis. Upon cell detachment, Bit1 is released into the cytoplasm and triggers caspase-independent cell death. Bit1 consists of 179 amino acids; for the C-terminal, two thirds of the molecule functions as a peptidyl-tRNA hydrolase, whereas the N-terminus contains a mitochondrial localization signal. Here, we localize the cell death domain (CDD) to the N-terminal 62 amino acids of Bit1 by transfecting cells with truncated Bit1 cDNA constructs. CDD was more potent in killing cells than the full-length Bit1 protein when equivalent amounts of cDNA were transfected. To develop Bit1 CDD into a cancer therapeutic, we engineered a recombinant protein consisting of the CDD fused to iRGD, which is a tumor-specific peptide with unique tumor-penetrating and cell-internalizing properties. iRGD-CDD internalized into cultured tumor cells through a neuropilin-1-activated pathway and triggered cell death. Importantly, iRGD-CDD spread extensively within the tumor when injected intratumorally into orthotopically implanted breast tumors in mice. Repeated treatment with iRGD-CDD strongly inhibited tumor growth, resulting in an average reduction of 77% in tumor volume and eradication of some tumors. The caspase independence of Bit1-induced cell death makes CDD a potentially attractive anticancer agent, because tumor resistance to the main mechanisms of apoptosis is circumvented. Using iRGD to facilitate the spreading of a therapeutic agent throughout the tumor mass may be a useful adjunct to local therapy for tumors that are surgically inoperable or difficult to treat systemically.


Journal of Controlled Release | 2015

A tumor-penetrating peptide enhances circulation-independent targeting of peritoneal carcinomatosis

Kazuki N. Sugahara; Pablo Scodeller; Gary B. Braun; Tatiana Hurtado de Mendoza; Chisato M. Yamazaki; Michael D. Kluger; Joji Kitayama; Edwin A. Alvarez; Stephen B. Howell; Tambet Teesalu; Erkki Ruoslahti; Andrew M. Lowy

Peritoneal carcinomatosis is a major source of morbidity and mortality in patients with advanced abdominal neoplasms. Intraperitoneal chemotherapy (IPC) is an area of intense interest given its efficacy in ovarian cancer. However, IPC suffers from poor drug penetration into peritoneal tumors. As such, extensive cytoreductive surgery is required prior to IPC. Here, we explore the utility of iRGD, a tumor-penetrating peptide, for improved tumor-specific penetration of intraperitoneal compounds and enhanced IPC in mice. Intraperitoneally administered iRGD significantly enhanced penetration of an attached fluorescein into disseminated peritoneal tumor nodules. The penetration was tumor-specific, circulation-independent, and mediated by the neuropilin-binding RXXK tissue-penetration peptide motif of iRGD. Q-iRGD, which fluoresces upon cleavage, including the one that leads to RXXK activation, specifically labeled peritoneal metastases displaying different growth patterns in mice. Importantly, iRGD enhanced intratumoral entry of intraperitoneally co-injected dextran to approximately 300% and doxorubicin to 250%. Intraperitoneal iRGD/doxorubicin combination therapy inhibited the growth of bulky peritoneal tumors and reduced systemic drug toxicity. iRGD delivered attached fluorescein and co-applied nanoparticles deep into fresh human peritoneal metastasis explants. These results indicate that intraperitoneal iRGD co-administration serves as a simple and effective strategy to facilitate tumor detection and improve the therapeutic index of IPC for peritoneal carcinomatosis.


Journal of Controlled Release | 2014

A free cysteine prolongs the half-life of a homing peptide and improves its tumor-penetrating activity.

Hong Bo Pang; Gary B. Braun; Zhi-Gang She; Venkata Ramana Kotamraju; Kazuki N. Sugahara; Tambet Teesalu; Erkki Ruoslahti

The accessibility of extravascular tumor tissue to drugs is critical for therapeutic efficacy. We previously described a tumor-targeting peptide (iRGD) that elicits active transport of drugs and macromolecules (covalently coupled or co-administered) across the vascular wall into tumor tissue. Short peptides (iRGD is a 9-amino acid cyclic peptide) generally have a plasma half-life measured in minutes. Since short half-life limits the window of activity obtained with a bolus injection of iRGD, we explored to extend the half-life of the peptide. We show here that addition of a cysteine residue prolongs the plasma half-life of iRGD and increases the accumulation of the peptide in tumors. This modification prolongs the activity of iRGD in inducing macromolecular extravasation and leads to greater drug accumulation in tumors than is obtained with the unmodified peptide. This effect is mediated by covalent binding of iRGD to plasma albumin through a disulfide bond. Our study provides a simple strategy to improve peptide pharmacokinetics and activity. Applied to RGD, it provides a means to increase the entry of therapeutic agents into tumors.


Biomaterials | 2015

Light-activated RNA interference in human embryonic stem cells

Xiao Huang; Qirui Hu; Gary B. Braun; Alessia Pallaoro; Demosthenes P. Morales; Joseph A. Zasadzinski; Dennis O. Clegg; Norbert O. Reich

We describe a near infrared (NIR) light-activated gene silencing method in undifferentiated human embryonic stem cell (hESC) using a plasmonic hollow gold nanoshell (HGN) as the siRNA carrier. Our modular biotin-streptavidin coupling strategy enables positively charged TAT-peptide to coat oligonucleotides-saturated nanoparticles as a stable colloid formation. TAT-peptide coated nanoparticles with dense siRNA loading show efficient penetration into a wide variety of hESC cell lines. The siRNA is freed from the nanoparticles and delivered to the cytosol by femtosecond pulses of NIR light with potentially exquisite spatial and temporal control. The effectiveness of this approach is shown by targeting GFP and Oct4 genes in undifferentiated hESC (H9). The accelerated expression of differentiation markers for all three germ layers resulting from Oct4 knockdown confirms that this method has no detectable adverse effects that limit the range of differentiation. This biocompatible and NIR laser-activated patterning method makes possible single cell resolution of siRNA delivery for diverse studies in stem cell biology, tissue engineering and regenerative medicine.


Molecular Cancer Therapeutics | 2016

Paclitaxel-Loaded Polymersomes for Enhanced Intraperitoneal Chemotherapy

Hedi Hunt; Pablo Scodeller; Jens Gaitzsch; Gary B. Braun; Anne-Mari Anton Willmore; Erkki Ruoslahti; Giuseppe Battaglia; Tambet Teesalu

Peritoneal carcinomatosis is present in more than 60% of gastric cancer, 40% of ovarian cancer, and 35% of colon cancer patients. It is the second most common cause of cancer-related mortality, with a median survival of 1 to 3 months. Cytoreductive surgery combined with intraperitoneal chemotherapy is the current clinical treatment, but achieving curative drug accumulation and penetration in peritoneal carcinomatosis lesions remains an unresolved challenge. Here, we used flexible and pH-sensitive polymersomes for payload delivery to peritoneal gastric (MKN-45P) and colon (CT26) carcinoma in mice. Polymersomes were loaded with paclitaxel and in vitro drug release was studied as a function of pH and time. Paclitaxel-loaded polymersomes remained stable in aqueous solution at neutral pH for up to 4 months. In cell viability assay on cultured cancer cell lines (MKN-45P, SKOV3, CT26), paclitaxel-loaded polymersomes were more toxic than free drug or albumin-bound paclitaxel (Abraxane). Intraperitoneally administered fluorescent polymersomes accumulated in malignant lesions, and immunofluorescence revealed an intense signal inside tumors with no detectable signal in control organs. A dual targeting of tumors was observed: direct (circulation-independent) penetration, and systemic, blood vessel–associated accumulation. Finally, we evaluated preclinical antitumor efficacy of paclitaxel-polymersomes in the treatment of MKN-45P disseminated gastric carcinoma using a total dose of 7 mg/kg. Experimental therapy with paclitaxel-polymersomes improved the therapeutic index of drug over free paclitaxel and Abraxane, as evaluated by intraperitoneal tumor burden and number of metastatic nodules. Our findings underline the potential utility of the polymersome platform for delivery of drugs and imaging agents to peritoneal carcinomatosis lesions. Mol Cancer Ther; 15(4); 670–9. ©2016 AACR.


ChemBioChem | 2016

New p32/gC1qR Ligands for Targeted Tumor Drug Delivery

Lauri Paasonen; Shweta Sharma; Gary B. Braun; Venkata Ramana Kotamraju; Thomas Dy Chung; Zhi-Gang She; Kazuki N. Sugahara; Marjo Yliperttula; Bainan Wu; Maurizio Pellecchia; Erkki Ruoslahti; Tambet Teesalu

Cell surface p32, the target of LyP‐1 homing peptide, is upregulated in tumors and atherosclerotic plaques and has been widely used as a receptor for systemic delivery of payloads. Here, we identified an improved LyP‐1‐mimicking peptide (TT1, CKRGARSTC). We used this peptide in a fluorescence polarization‐based high‐throughput screening of a 50u2009000‐compound chemical library and identified a panel of compounds that bind p32 with low micromolar affinity. Among the hits identified in the screen, two compounds were shown to specifically bind to p32 in multiple assays. One of these compounds was chosen for an in vivo study. Nanoparticles surface‐functionalized with this compound specifically adhered to surfaces coated with recombinant p32 and, when injected intravenously, homed to p32‐expressing breast tumors in mice. This compound provides a lead for the development of p32‐targeted affinity ligands that circumvent some of the limitations of peptide‐based probes in guided drug delivery.


Journal of Nanophotonics | 2013

Combined surface-enhanced Raman spectroscopy biotags and microfluidic platform for quantitative ratiometric discrimination between noncancerous and cancerous cells in flow

Alessia Pallaoro; Mehran R. Hoonejani; Gary B. Braun; Carl D. Meinhart; Martin Moskovits

Abstract. Surface-enhanced Raman spectroscopy (SERS) biotags (SBTs) that carry peptides as cell recognition moieties were made from polymer-encapsulated silver nanoparticle dimers, infused with unique Raman reporter molecules. We previously demonstrated their potential use for identification of malignant cells, a central goal in cancer research, through a multiplexed, ratiometric method that can confidently distinguish between cancerous and noncancerous epithelial prostate cells in vitro based on receptor overexpression. Progress has been made toward the application of this quantitative methodology for the identification of cancer cells in a microfluidic flow-focusing device. Beads are used as cell mimics to evaluate the devices. Cells (and beads) are simultaneously incubated with two sets of SBTs while in suspension, then injected into the device for laser interrogation under flow. Each cell event is characterized by a composite Raman spectrum, deconvoluted into its single components to ultimately determine their relative contribution. We have found that using SBTs ratiometrically can provide cell identification in flow, insensitive to normal causes of uncertainty in optical measurements such as variations in focal plane, cell concentration, autofluorescence, and turbidity.


Nature Communications | 2017

In vivo cation exchange in quantum dots for tumor-specific imaging

Xiangyou Liu; Gary B. Braun; Mingde Qin; Erkki Ruoslahti; Kazuki N. Sugahara

In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.


Nature Biomedical Engineering | 2018

Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy

Sazid Hussain; Jinmyoung Joo; Jinyoung Kang; Byungji Kim; Gary B. Braun; Zhi-Gang She; Dokyoung Kim; Aman P. Mann; Tarmo Mölder; Tambet Teesalu; Santina Carnazza; Salvatore Guglielmino; Michael J. Sailor; Erkki Ruoslahti

Bacterial resistance to antibiotics has made it necessary to resort to using antibacterial drugs that have considerable toxicities. Here, we show that conjugation of vancomycin-loaded nanoparticles with the cyclic 9-amino-acid peptide CARGGLKSC (CARG), identified via phage display on Staphylococcus aureus (S. aureus) bacteria and through in vivo screening in mice with S. aureus-induced lung infections, increases the antibacterial activity of the nanoparticles in S. aureus-infected tissues and reduces the systemic dose needed, minimizing side effects. CARG binds specifically to S. aureus bacteria but not Pseudomonas bacteria in vitro, selectively accumulates in S. aureus-infected lungs and skin of mice but not in non-infected tissue and Pseudomonas-infected tissue, and significantly enhances the accumulation of intravenously injected vancomycin-loaded porous silicon nanoparticles bearing CARG in S. aureus-infected mouse lung tissue. The targeted nanoparticles more effectively suppress staphylococcal infections in vivo relative to equivalent doses of untargeted vancomycin nanoparticles or of free vancomycin. The therapeutic delivery of antibiotic-carrying nanoparticles bearing peptides targeting infected tissues may help combat difficult-to-treat infections.Nanoparticles carrying an antibiotic and conjugated with a peptide identified via phage display that binds specifically to Staphylococcus aureus effectively suppress staphylococcal infections in vivo.

Collaboration


Dive into the Gary B. Braun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao Huang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge