Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary Cowin is active.

Publication


Featured researches published by Gary Cowin.


Clinical Gastroenterology and Hepatology | 2014

Resveratrol Does Not Benefit Patients With Nonalcoholic Fatty Liver Disease

Veronique Chachay; Graeme A. Macdonald; Jennifer H. Martin; Jonathan P. Whitehead; Trisha O'Moore-Sullivan; Paul Lee; Michael E. Franklin; Kerenaftali Klein; Paul J. Taylor; Maree Ferguson; Jeff S. Coombes; Gethin P. Thomas; Gary Cowin; Carl M. J. Kirkpatrick; Johannes B Prins; Ingrid J. Hickman

BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD), characterized by accumulation of hepatic triglycerides (steatosis), is associated with abdominal obesity, insulin resistance, and inflammation. Although weight loss via calorie restriction reduces features of NAFLD, there is no pharmacologic therapy. Resveratrol is a polyphenol that prevents high-energy diet-induced steatosis and insulin resistance in animals by up-regulating pathways that regulate energy metabolism. We performed a placebo-controlled trial to assess the effects of resveratrol in patients with NAFLD. METHODS Overweight or obese men diagnosed with NAFLD were recruited from hepatology outpatient clinics in Brisbane, Australia from 2011 through 2012. They were randomly assigned to groups given 3000 mg resveratrol (n = 10) or placebo (n = 10) daily for 8 weeks. Outcomes included insulin resistance (assessed by the euglycemic-hyperinsulinemic clamp), hepatic steatosis, and abdominal fat distribution (assessed by magnetic resonance spectroscopy and imaging). Plasma markers of inflammation, as well as metabolic, hepatic, and antioxidant function, were measured; transcription of target genes was measured in peripheral blood mononuclear cells. Resveratrol pharmacokinetics and safety were assessed. RESULTS Eight-week administration of resveratrol did not reduce insulin resistance, steatosis, or abdominal fat distribution when compared with baseline. No change was observed in plasma lipids or antioxidant activity. Levels of alanine and aspartate aminotransferases increased significantly among patients in the resveratrol group until week 6 when compared with the placebo group. Resveratrol did not significantly alter transcription of NQO1, PTP1B, IL6, or HO1 in peripheral blood mononuclear cells. Resveratrol was well-tolerated. CONCLUSIONS Eight weeks administration of resveratrol did not significantly improve any features of NAFLD, compared with placebo, but it increased hepatic stress, based on observed increases in levels of liver enzymes. Further studies are needed to determine whether agents that are purported to mimic calorie restriction, such as resveratrol, are safe and effective for complications of obesity. Clinical trials registration no: ACTRN12612001135808.


Magnetic Resonance in Medicine | 2004

Use of spherical harmonic deconvolution methods to compensate for nonlinear gradient effects on MRI images.

Andrew L. Janke; Huawei Zhao; Gary Cowin; Graham J. Galloway; David M. Doddrell

Spatial encoding in MR techniques is achieved by sampling the signal as a function of time in the presence of a magnetic field gradient. The gradients are assumed to generate a linear magnetic field gradient, and typical image reconstruction relies upon this approximation. However, high‐speed gradients in the current generation of MRI scanners often sacrifice linearity for improvements in speed. Such nonlinearity results in distorted images. The problem is presented in terms of first principles, and a correction method based on a gradient field spherical harmonic expansion is proposed. In our case, the amount of distortion measured within a typical field of view (FOV) required for head imaging is sufficiently large that without the use of some distortion correction technique, the images would be of limited use for stereotaxy or longitudinal studies, where precise volumetric information is required. Magn Reson Med 52:115–122, 2004.


NeuroImage | 2010

A three-dimensional digital atlas of the zebrafish brain

Jeremy F.P. Ullmann; Gary Cowin; Nyoman D. Kurniawan; Shaun P. Collin

In the past three decades, the zebrafish has become a vital animal model in a range of biological sciences. To augment current neurobiological research, we have developed the first three-dimensional digital atlas of the zebrafish brain from T2-weighted magnetic resonance histology (MRH) images acquired on a 16.4-T superconducting magnet. We achieved an isotropic resolution of 10 microm, which is the highest resolution achieved in a vertebrate brain and, for the first time, is comparable in slice thickness to conventional histology. By using manual segmentation, 53 anatomical structures, including fiber tracts as small as 40 microm, were delineated. Using Amira software, structures were also individually segmented and reconstructed to create three-dimensional animations. Additional quantitative information including, volume, surface areas, and mean gray scale intensities were also determined. Finally, we established a stereotaxic coordinate system as a framework in which maps created from other modalities can be incorporated into the atlas.


Magnetic Resonance Imaging | 2002

MR image-based measurement of rates of change in volumes of brain structures. Part II: application to a study of Alzheimer’s disease and normal aging

Deming Wang; Jonathan B. Chalk; Stephen E. Rose; Greig I. de Zubicaray; Gary Cowin; Graham J. Galloway; Daniel Barnes; D. Spooner; David M. Doddrell; James Semple

We present global and regional rates of brain atrophy measured on serially acquired T1-weighted brain MR images for a group of Alzheimers disease (AD) patients and age-matched normal control (NC) subjects using the analysis procedure described in Part I. Three rates of brain atrophy: the rate of atrophy in the cerebrum, the rate of lateral ventricular enlargement and the rate of atrophy in the region of temporal lobes, were evaluated for 14 AD patients and 14 age-matched NC subjects. All three rates showed significant differences between the two groups. However, the greatest separation of the two groups was obtained when the regional rates were combined. This application has demonstrated that rates of brain atrophy, especially in specific regions of the brain, based on MR images can provide sensitive measures for evaluating the progression of AD. These measures will be useful for the evaluation of therapeutic effects of novel therapies for AD.


NeuroImage | 2013

Vertebral landmarks for the identification of spinal cord segments in the mouse

Megan Harrison; Aine O'Brien; Lucy Adams; Gary Cowin; Marc J. Ruitenberg; Gulgun Sengul; Charles Watson

Accurate identification of spinal cord segments in relation to vertebral landmarks is essential to surgery aimed at experimental spinal cord injury. We have analyzed a complete series of high-resolution magnetic resonance (MR) images from the mouse spine in order to delineate the boundaries of spinal cord segments in relation to vertebral landmarks. The resulting atlas can be used to plan experimental approaches that require the accurate identification of a target spinal cord segment.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer

Brian Wan-Chi Tse; Gary Cowin; Carolina Soekmadji; Lidija Jovanovic; Raja S. Vasireddy; Ming-Tat Ling; Aparajita Khatri; Tianqing Liu; Benjamin Thierry; Pamela J. Russell

AIM To evaluate the potential of newly-developed, biocompatible iron oxide magnetic nanoparticles (MNPs) conjugated with J591, an antibody to an extracellular epitope of PSMA, to enhance MRI of prostate cancer. MATERIALS & METHODS Specific binding to PSMA by J591-MNP was investigated in vitro. MRI studies were performed on orthotopic tumor-bearing NOD.SCID mice 2 h and 24 h after intravenous injection of J591-MNPs, or non-targeting MNPs. RESULTS & CONCLUSION In vitro, MNPs did not affect prostate cancer cell viability, and conjugation to J591 did not compromise antibody specificity and enhanced cellular iron uptake. Magnetic resonance contrast of tumors was increased in vivo using PSMA-targeting MNPs, but not by non-targeting MNPs. This provides proof-of-concept that PSMA-targeting MNPs have potential to enhance magnetic resonance detection/localization of prostate cancer.


Magnetic Resonance in Medicine | 2011

16 T Diffusion microimaging of fixed prostate tissue: Preliminary findings

Roger Bourne; Nyoman D. Kurniawan; Gary Cowin; Paul Sved; Geoff Watson

Diffusion tensor microimaging was used to investigate the water diffusion properties of formalin‐fixed prostate tissue at spatial resolution approaching the cellular scale. Diffusion tensor microimaging was performed at 16.4 T with 40 μm isotropic voxels. Diffusion tensor microimaging clearly demonstrated distinct microscopic diffusion environments and tissue architecture consistent with that seen on light microscopy of the same tissue. The most restricted diffusion environment is the secretory epithelial cell layer (voxel bulk mean diffusivity, D = 0.4 ± 0.1 × 10−3 mm2/sec). Diffusion in the fibromuscular stromal matrix is relatively less restricted (D = 0.7 ± 0.1 × 10−3 mm2/sec). In tumor tissue (Gleason pattern 4+4) distinct glandular and ductal structures are absent in the diffusion‐weighted images and diffusivity is low (D = 0.5 ± 0.1 × 10−3 mm2/sec). Distinct stromal and epithelial diffusion compartments are the most likely origin of biexponential diffusion decay observed in vivo. Magn Reson Med, 2011.


Small | 2012

In vivo Imaging and Biodistribution of Multimodal Polymeric Nanoparticles Delivered to the Optic Nerve

James Harrison; Carole A. Bartlett; Gary Cowin; P.K. Nicholls; Cameron W. Evans; Tristan D. Clemons; Bogdan Zdyrko; Igor Luzinov; Alan R. Harvey; K. Swaminathan Iyer; Sarah A. Dunlop; Melinda Fitzgerald

The use of nanoparticles for targeted delivery of therapeutic agents to sites of injury or disease in the central nervous system (CNS) holds great promise. However, the biodistribution of nanoparticles following in vivo administration is often unknown, and concerns have been raised regarding potential toxicity. Using poly(glycidyl methacrylate) (PGMA) nanoparticles coated with polyethylenimine (PEI) and containing superparamagnetic iron oxide nanoparticles as a magnetic resonance imaging (MRI) contrast agent and rhodamine B as a fluorophore, whole animal MRI and fluorescence analyses are used to demonstrate that these nanoparticles (NP) remain close to the site of injection into a partial injury of the optic nerve, a CNS white matter tract. In addition, some of these NP enter axons and are transported to parent neuronal somata. NP also remain in the eye following intravitreal injection, a non-injury model. Considerable infiltration of activated microglia/macrophages occurs in both models. Using magnetic concentration and fluorescence visualization of tissue homogenates, no dissemination of the NP into peripheral tissues is observed. Histopathological analysis reveals no toxicity in organs other than at the injection sites. Multifunctional nanoparticles may be a useful mechanism to deliver therapeutic agents to the injury site and somata of injured CNS neurons and thus may be of therapeutic value following brain or spinal cord trauma.


NeuroImage | 2011

Non-invasive diffusion tensor imaging detects white matter degeneration in the spinal cord of a mouse model of amyotrophic lateral sclerosis

Clare K. Underwood; Nyoman D. Kurniawan; Tim J. Butler; Gary Cowin; Robyn H. Wallace

Amyotrophic lateral sclerosis (ALS) is characterized by selective degeneration of motor neurons. Here we examine the ability of magnetic resonance imaging (MRI) to measure axonal degeneration in the lumbar spinal cord of the SOD1 mouse model of ALS. Diffusion tensor imaging (DTI) was successful in detecting axonal spinal cord damage in vivo. Fractional anisotropy (FA) values were reduced exclusively in the ventral white matter tracts of the lumbar spinal cord of ALS-affected SOD1 mice compared to wild-type littermates, with this effect becoming more pronounced with disease progression. The reduced FA values were therefore limited to white matter tracts arising from the motor neurons, whereas sensory white matter fibers were preserved. Significant decreases in water diffusion parallel to the white matter fibers or axial diffusivity were observed in the SOD1 mice, which can be attributed to the axonal degeneration observed by electron microscopy. At the same time, radial diffusivity perpendicular to the spinal column increased in the SOD1 mice, reflecting reduced myelination. These results demonstrate the usefulness of MRI in tracking disease progression in live animals and will aid in the assessment of treatment efficacy. This method could also potentially be adapted to aid the diagnosis and assessment of ALS progression in humans.


Brain Research | 2006

Intrauterine growth restriction due to uteroplacental vascular insufficiency leads to increased hypoxia-induced cerebral apoptosis in newborn piglets

C. Burke; Kate Sinclair; Gary Cowin; Stephen E. Rose; B. Pat; Glenda C. Gobe; Paul B. Colditz

Uteroplacental vascular insufficiency in humans is a common cause of intrauterine growth restriction (IUGR) and is associated with an increased incidence of perinatal asphyxia and neurodevelopmental disorders compared to normal weight newborns. Experimental models that provide an opportunity to analyze the pathogenesis of these relationships are limited. Here, we used neonatal pigs from large litters in which there were piglets of normal birth weight (for controls) and of low birth weight (for uteroplacental vascular insufficiency). Hypoxia was induced in paired littermates by reducing the fraction of inspired oxygen to 4% for 25 min. Brain tissue was collected 4 h post-hypoxia. Cerebral levels of apoptosis were quantified morphologically and verified with caspase-3 activity and TUNEL. Expression of Bcl-2, Bcl-XL and Bax proteins was investigated using immunohistochemistry. Cellular positivity for Bcl-2 was consistently higher in the non-apoptotic white matter of the hypoxic IUGR animals compared with their littermates and reached significance at P < 0.05 in several pairs of littermates. Alterations in Bax showed a trend towards higher expression in the hypoxic IUGR littermates but rarely reached significance. The IUGR piglets showed a significantly greater amount of apoptosis in response to the hypoxia than the normal weight piglets, suggesting an increased vulnerability to apoptosis in the IUGR piglets.

Collaboration


Dive into the Gary Cowin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deming Wang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen E. Rose

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaun P. Collin

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Strudwick

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge