Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary D. Probst is active.

Publication


Featured researches published by Gary D. Probst.


Expert Opinion on Therapeutic Patents | 2012

Small-molecule BACE1 inhibitors: a patent literature review (2006 – 2011)

Gary D. Probst; Ying-Zi Xu

Introduction: Alzheimers disease is a devastating neurodegenerative disorder for which no disease-modifying therapy exists. The amyloid hypothesis, which implicates Aβ as the toxin initiating a biological cascade leading to neurodegeneration, is the most prominent theory concerning the underlying cause of the disease. BACE1 is one of two aspartyl proteinases that generate Aβ, thus inhibition of BACE1 has the potential to ameliorate the progression of Alzheimers disease by abating the production of Aβ. Areas covered: This review chronicles small-molecule BACE1 inhibitors as described in the patent literature between 2006 and 2011 and their potential use as disease-modifying treatments for Alzheimers disease. Over the past half a dozen years, numerous BACE1 inhibitors have been published in the patent applications, but often these contain a paltry amount of pertinent biological data (e.g. potency, selectivity, and efficacy). Fortunately, numerous relevant publications containing important data have appeared in the journal literature during this period. The goal in this effort was to create an amalgam of the two records to add value to this review. Expert opinion: The pharmaceutical industry has made tremendous progress in the development of small-molecule BACE1 inhibitors that lower Aβ in the central nervous system. Assuming the amyloid hypothesis is veracious, we anticipate a disease-modifying therapy to combat Alzheimers disease is near.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of betrixaban (PRT054021), N-(5-chloropyridin-2-yl)-2-(4-(N,N-dimethylcarbamimidoyl)benzamido)-5-methoxybenzamide, a highly potent, selective, and orally efficacious factor Xa inhibitor.

Penglie Zhang; Wenrong Huang; Lingyan Wang; Liang Bao; Zhaozhong J. Jia; Shawn M. Bauer; Erick A. Goldman; Gary D. Probst; Yonghong Song; Ting Su; Jingmei Fan; Yanhong Wu; Wenhao Li; John Woolfrey; Uma Sinha; Paul Wong; Susan T. Edwards; Ann E. Arfsten; Lane Clizbe; James Kanter; Anjali Pandey; Gary Park; Athiwat Hutchaleelaha; Joseph L. Lambing; Stanley J. Hollenbach; Robert M. Scarborough; Bing-Yan Zhu

Systematic SAR studies of in vitro factor Xa inhibitory activity around compound 1 were performed by modifying each of the three phenyl rings. A class of highly potent, selective, efficacious and orally bioavailable direct factor Xa inhibitors was discovered. These compounds were screened in hERG binding assays to examine the effects of substitution groups on the hERG channel affinity. From the leading compounds, betrixaban (compound 11, PRT054021) has been selected as the clinical candidate for development.


Current Pharmaceutical Design | 2007

The Role and Significance of Unconventional Hydrogen Bonds in Small Molecule Recognition by Biological Receptors of Pharmaceutical Relevance

Gergely Toth; Simeon Bowers; Anh P. Truong; Gary D. Probst

The discovery and optimization of nonbonded interactions, such as van der Waals interactions, hydrogen bonds, salt bridges and the hydrophobic effect, between small molecule ligands and their receptors is one of the main challenges in rational drug discovery. As the theory of molecular interactions advances more evidence accumulates that nonbonded interactions, such as unconventional hydrogen bonds (X-H...Y interactions, where X can be either C, N or O atom and Y can be either an aromatic ring system O or F atom), contribute to ligand recognition by biological receptors. This review provides an overview of unconventional hydrogen bonds between ligands and their receptors of pharmaceutical relevance by dissecting their structure activity relationships and 3D structural elements. Gaining an understanding of the energetic and the structural properties of unconventional hydrogen bonds in ligand-receptor interactions leads us to the elucidation of their practical significance. Ultimately, this enables us to consciously apply these interactions in hit and lead optimization in rational structure based drug design.


Molecular Pharmaceutics | 2015

Antibody–Drug Conjugates (ADCs) Derived from Interchain Cysteine Cross-Linking Demonstrate Improved Homogeneity and Other Pharmacological Properties over Conventional Heterogeneous ADCs

Christopher R. Behrens; Edward Ha; Lawrence Chinn; Simeon Bowers; Gary D. Probst; Maureen Fitch-Bruhns; Jorge Monteon; Amanda Valdiosera; Abel Bermudez; Sindy Liao-Chan; Tiffany Wong; Jonathan Melnick; Jan-Willem Theunissen; Mark R. Flory; Derrick Houser; Kristy Venstrom; Zoia Levashova; Paul Sauer; Thi-Sau Migone; Edward H. van der Horst; Randall L. Halcomb; David Y. Jackson

Conventional antibody-drug conjugates (ADCs) are heterogeneous mixtures of chemically distinct molecules that vary in both drugs/antibody (DAR) and conjugation sites. Suboptimal properties of heterogeneous ADCs have led to new site-specific conjugation methods for improving ADC homogeneity. Most site-specific methods require extensive antibody engineering to identify optimal conjugation sites and introduce unique functional groups for conjugation with appropriately modified linkers. Alternative nonrecombinant methods have emerged in which bifunctional linkers are utilized to cross-link antibody interchain cysteines and afford ADCs containing four drugs/antibody. Although these methods have been shown to improve ADC homogeneity and stability in vitro, their effect on the pharmacological properties of ADCs in vivo is unknown. In order to determine the relative impact of interchain cysteine cross-linking on the therapeutic window and other properties of ADCs in vivo, we synthesized a derivative of the known ADC payload, MC-MMAF, that contains a bifunctional dibromomaleimide (DBM) linker instead of a conventional maleimide (MC) linker. The DBM-MMAF derivative was conjugated to trastuzumab and a novel anti-CD98 antibody to afford ADCs containing predominantly four drugs/antibody. The pharmacological properties of the resulting cross-linked ADCs were compared with analogous heterogeneous ADCs derived from conventional linkers. The results demonstrate that DBM linkers can be applied directly to native antibodies, without antibody engineering, to yield highly homogeneous ADCs via cysteine cross-linking. The resulting ADCs demonstrate improved pharmacokinetics, superior efficacy, and reduced toxicity in vivo compared to analogous conventional heterogeneous ADCs.


Bioorganic & Medicinal Chemistry Letters | 2010

Design of an orally efficacious hydroxyethylamine (HEA) BACE-1 inhibitor in a preclinical animal model.

Anh P. Truong; Gergley Tóth; Gary D. Probst; Jennifer Sealy; Simeon Bowers; David W. G. Wone; Darren B. Dressen; Roy K. Hom; Andrei W. Konradi; Hing L. Sham; Jing Wu; Brian Peterson; Lany Ruslim; Michael P. Bova; Dora Kholodenko; Ruth Motter; Frederique Bard; Pamela Santiago; Huifang Ni; David Chian; Ferdie Soriano; Tracy Cole; Elizabeth F. Brigham; Karina Wong; Wes Zmolek; Erich Goldbach; Bhushan Samant; Linda Chen; Hongbing Zhang; David Nakamura

In this Letter, we describe our efforts to design HEA BACE-1 inhibitors that are highly permeable coupled with negligible levels of permeability-glycoprotein activity. These efforts culminate in producing 16 which lowers Αβ by 28% and 32% in the cortex and CSF, respectively, in the preclinical wild type Hartley guinea pig animal model when dosed orally at 30mpk BID for 2.5days.


Bioorganic & Medicinal Chemistry Letters | 2009

Design, synthesis, and structure–activity relationship of novel orally efficacious pyrazole/sulfonamide based dihydroquinoline γ-secretase inhibitors

Anh P. Truong; Danielle L. Aubele; Gary D. Probst; Martin L. Neitzel; Chris M. Semko; Simeon Bowers; Darren B. Dressen; Roy K. Hom; Andrei W. Konradi; Hing L. Sham; Albert W. Garofalo; Pamela S. Keim; Jing Wu; Michael S. Dappen; Karina Wong; Erich Goldbach; Kevin P. Quinn; John-Michael Sauer; Elizabeth F. Brigham; William Wallace; Lan Nguyen; Susanna S. Hemphill; Michael P. Bova; Guriqbal S. Basi

In this Letter, we report our strategy to design potent and metabolically stable gamma-secretase inhibitors that are efficacious in reducing the cortical Abetax-40 levels in FVB mice via a single PO dose.


Bioorganic & Medicinal Chemistry Letters | 2011

Highly selective c-Jun N-terminal kinase (JNK) 2 and 3 inhibitors with in vitro CNS-like pharmacokinetic properties prevent neurodegeneration.

Gary D. Probst; Simeon Bowers; Jennifer Sealy; Anh P. Truong; Robert A. Galemmo; Andrei W. Konradi; Hing L. Sham; David A. Quincy; Hu Pan; Nanhua Yao; May Lin; Gergley Tóth; Dean R. Artis; Wes Zmolek; Karina Wong; Ann Qin; Colin Lorentzen; David Nakamura; Kevin P. Quinn; John-Michael Sauer; Kyle Powell; Lany Ruslim; Sarah Wright; David Chereau; Zhao Ren; John P. Anderson; Frederique Bard; Ted Yednock; Irene Griswold-Prenner

In this Letter, we describe the discovery of selective JNK2 and JNK3 inhibitors, such as 10, that routinely exhibit >10-fold selectivity over JNK1 and >1000-fold selectivity over related MAPKs, p38α and ERK2. Substitution of the naphthalene ring affords an isoform selective JNK3 inhibitor, 30, with approximately 10-fold selectivity over both JNK1 and JNK2. A naphthalene ring penetrates deep into the selectivity pocket accounting for the differentiation amongst the kinases. Interestingly, the gatekeeper Met146 sulfide interacts with the naphthalene ring in a sulfur-π stacking interaction. Compound 38 ameliorates neurotoxicity induced by amyloid-β in human cortical neurons. Lastly, we demonstrate how to install propitious in vitro CNS-like properties into these selective inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2011

Design and synthesis of a novel, orally active, brain penetrant, tri-substituted thiophene based JNK inhibitor.

Simeon Bowers; Anh P. Truong; R. Jeffrey Neitz; Martin L. Neitzel; Gary D. Probst; Roy K. Hom; Brian Peterson; Robert A. Galemmo; Andrei W. Konradi; Hing L. Sham; Gergley Tóth; Hu Pan; Nanhua Yao; Dean R. Artis; Elizabeth F. Brigham; Kevin P. Quinn; John-Michael Sauer; Kyle Powell; Lany Ruslim; Zhao Ren; Frederique Bard; Ted Yednock; Irene Griswold-Prenner

The SAR of a series of tri-substituted thiophene JNK3 inhibitors is described. By optimizing both the N-aryl acetamide region of the inhibitor and the 4-position of the thiophene we obtained single digit nanomolar compounds, such as 47, which demonstrated an in vivo effect on JNK activity when dosed orally in our kainic acid mouse model as measured by phospho-c-jun reduction.


Bioorganic & Medicinal Chemistry Letters | 2013

Novel cinnoline-based inhibitors of LRRK2 kinase activity.

Albert W. Garofalo; Marc Adler; Danielle L. Aubele; Simeon Bowers; Maurizio Franzini; Erich Goldbach; Colin Lorentzen; R. Jeffrey Neitz; Gary D. Probst; Kevin P. Quinn; Pam Santiago; Hing L. Sham; Danny Tam; Anh P. Truong; Xiaocong M. Ye; Zhao Ren

Leucine rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinsons disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of cinnoline-3-carboxamides that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays. These compounds are also shown to be potent inhibitors in a cellular assay and to have good to excellent CNS penetration.


Bioorganic & Medicinal Chemistry Letters | 2011

Design and synthesis of brain penetrant selective JNK inhibitors with improved pharmacokinetic properties for the prevention of neurodegeneration.

Simeon Bowers; Anh P. Truong; R. Jeffrey Neitz; Jennifer Sealy; Gary D. Probst; David A. Quincy; Brian Peterson; Wayman Chan; Robert A. Galemmo; Andrei W. Konradi; Hing L. Sham; Gergely Toth; Hu Pan; May Lin; Nanhua Yao; Dean R. Artis; Heather Zhang; Linda Chen; Mark Dryer; Bhushan Samant; Wes Zmolek; Karina Wong; Colin Lorentzen; Erich Goldbach; George Tonn; Kevin P. Quinn; John-Michael Sauer; Sarah Wright; Kyle Powell; Lany Ruslim

The SAR of a series of brain penetrant, trisubstituted thiophene based JNK inhibitors with improved pharmacokinetic properties is described. These compounds were designed based on information derived from metabolite identification studies which led to compounds such as 42 with lower clearance, greater brain exposure and longer half life compared to earlier analogs.

Collaboration


Dive into the Gary D. Probst's collaboration.

Top Co-Authors

Avatar

Hing L. Sham

Thermo Fisher Scientific

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay S. Tung

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge