Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary E. Ward is active.

Publication


Featured researches published by Gary E. Ward.


Cell | 1990

Identification of cell cycle-regulated phosphorylation sites on nuclear lamin C

Gary E. Ward; Marc W. Kirschner

The mechanism by which MPF induces nuclear lamin disassembly and nuclear envelope breakdown during mitosis was studied in a frog egg extract in which the transition from interphase to mitosis can be induced by the addition of MPF. Bacterially expressed human nuclear lamin C, assembled in vitro into filaments, showed increased phosphorylation on specific sites in the extract in response to MPF. Phosphorylation was accompanied by disassembly of the lamin filaments. We determined the sequences of the sites phosphorylated both in the presence and absence of MPF. The sequence data suggest that multiple protein kinases act on the lamins, and S6 kinase II was identified as one potentially important lamin kinase.


PLOS Pathogens | 2005

Identification of the Moving Junction Complex of Toxoplasma gondii: A Collaboration between Distinct Secretory Organelles

David L. Alexander; Jeffrey Mital; Gary E. Ward; Peter J. Bradley; John C. Boothroyd

Apicomplexan parasites, including Toxoplasma gondii and Plasmodium sp., are obligate intracellular protozoa. They enter into a host cell by attaching to and then creating an invagination in the host cell plasma membrane. Contact between parasite and host plasma membranes occurs in the form of a ring-shaped moving junction that begins at the anterior end of the parasite and then migrates posteriorly. The resulting invagination of host plasma membrane creates a parasitophorous vacuole that completely envelops the now intracellular parasite. At the start of this process, apical membrane antigen 1 (AMA1) is released onto the parasite surface from specialized secretory organelles called micronemes. The T. gondii version of this protein, TgAMA1, has been shown to be essential for invasion but its exact role has not previously been determined. We identify here a trio of proteins that associate with TgAMA1, at least one of which associates with TgAMA1 at the moving junction. Surprisingly, these new proteins derive not from micronemes, but from the anterior secretory organelles known as rhoptries and specifically, for at least two, from the neck portion of these club-shaped structures. Homologues for these AMA1-associated proteins are found throughout the Apicomplexa strongly suggesting that this moving junction apparatus is a conserved feature of this important class of parasites. Differences between the contributing proteins in different species may, in part, be the result of selective pressure from the different niches occupied by these parasites.


Cell | 1990

The duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites.

John H. Adams; Dlana E. Hudson; Motomi Torii; Gary E. Ward; Thomas E. Wellems; Masamichi Aikawa; Louis H. Miller

Plasmodium vivax and Plasmodium knowlesi merozoites invade human erythrocytes that express Duffy blood group surface determinants. A soluble parasite protein of 135 kd binds specifically to a human Duffy antigen. Using antisera affinity purified on the 135 kd protein, we cloned a gene that encodes a member of a P. knowlesi family of erythrocyte binding proteins. The gene is a member of a family that includes three homologous genes located on separate chromosomes. Two genes are expressed as major membrane-bound products that give rise to soluble erythrocyte binding proteins: the 135 kd Duffy binding protein and a 138 kd protein that binds only rhesus erythrocytes. These different erythrocyte binding specificities may result from sequence divergence of the homologous genes. The Duffy receptor family is localized in micronemes, an organelle found in all organisms of the phylum Apicomplexa.


Journal of Cell Biology | 2004

Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii.

Elizabeth Gaskins; Stacey D. Gilk; Nicolette DeVore; Tara Mann; Gary E. Ward; Con J. M. Beckers

Apicomplexan parasites exhibit a unique form of substrate-dependent motility, gliding motility, which is essential during their invasion of host cells and during their spread between host cells. This process is dependent on actin filaments and myosin that are both located between the plasma membrane and two underlying membranes of the inner membrane complex. We have identified a protein complex in the apicomplexan parasite Toxoplasma gondii that contains the class XIV myosin required for gliding motility, TgMyoA, its associated light chain, TgMLC1, and two novel proteins, TgGAP45 and TgGAP50. We have localized this complex to the inner membrane complex of Toxoplasma, where it is anchored in the membrane by TgGAP50, an integral membrane glycoprotein. Assembly of the protein complex is spatially controlled and occurs in two stages. These results provide the first molecular description of an integral membrane protein as a specific receptor for a myosin motor, and further our understanding of the motile apparatus underlying gliding motility in apicomplexan parasites.


Nature Chemical Biology | 2008

Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility.

Nobutaka Kato; Tomoyo Sakata; Ghislain Breton; Karine G. Le Roch; Advait Nagle; Carsten B Andersen; Badry Bursulaya; Kerstin Henson; Jeffrey R. Johnson; Kota Arun Kumar; Felix Marr; Daniel E. Mason; Case W. McNamara; David Plouffe; Muriel Spooner; Tove Tuntland; Yingyao Zhou; Eric C. Peters; Arnab K. Chatterjee; Peter G. Schultz; Gary E. Ward; Nathanael S. Gray; Jeffrey F. Harper; Elizabeth A. Winzeler

Calcium-dependent protein kinases play a crucial role in intracellular calcium signaling in plants, some algae and protozoa. In Plasmodium falciparum, calcium-dependent protein kinase 1 (PfCDPK1) is expressed during schizogony in the erythrocytic stage as well as in the sporozoite stage. It is coexpressed with genes that encode the parasite motor complex, a cellular component required for parasite invasion of host cells, parasite motility and potentially cytokinesis. A targeted gene-disruption approach demonstrated that pfcdpk1 seems to be essential for parasite viability. An in vitro biochemical screen using recombinant PfCDPK1 against a library of 20,000 compounds resulted in the identification of a series of structurally related 2,6,9-trisubstituted purines. Compound treatment caused sudden developmental arrest at the late schizont stage in P. falciparum and a large reduction in intracellular parasites in Toxoplasma gondii, which suggests a possible role for PfCDPK1 in regulation of parasite motility during egress and invasion.


Molecular and Biochemical Parasitology | 2000

The Toxoplasma homolog of Plasmodium apical membrane antigen-1 (AMA-1) is a microneme protein secreted in response to elevated intracellular calcium levels

Carolyn G. Donahue; Vern B. Carruthers; Stacey D. Gilk; Gary E. Ward

A monoclonal antibody (MAb) has been generated against a novel 63 kDa surface/apical antigen of Toxoplasma gondii tachyzoites which is identified here as TgAMA-1, the Toxoplasma homolog of Plasmodium apical membrane antigen-1 (AMA-1). Sequence analysis, phase partitioning in Triton X-114, and labeling of TgAMA-1 with iodonaphthalene azide all suggest that TgAMA-1 is a type I transmembrane protein. There is a high degree of sequence similarity between TgAMA-1 and Plasmodium AMA-1, most notably in the position of conserved cysteine residues within the proteins predicted extracellular domain. In contrast to full length Plasmodium AMA-1, which has previously been localized to the rhoptries, it is shown here by immunofluorescence and immunoelectron microscopy that intracellular TgAMA-1 is found in the micronemes. A 53 kDa N-terminal proteolytic fragment of TgAMA-1 is constitutively secreted from the parasite at 37 degrees C. As is the case with other microneme proteins, the proteolytic processing and secretion of TgAMA-1 is dramatically enhanced in response to treatments which increase intracellular calcium levels.


Eukaryotic Cell | 2004

The Toxoplasma gondii Rhoptry Protein ROP4 Is Secreted into the Parasitophorous Vacuole and Becomes Phosphorylated in Infected Cells

Kimberly L. Carey; Artemio M. Jongco; Kami Kim; Gary E. Ward

ABSTRACT Many intracellular pathogens are separated from the cytosol of their host cells by a vacuole membrane. This membrane serves as a critical interface between the pathogen and the host cell, across which nutrients are imported, wastes are excreted, and communication between the two cells takes place. Very little is known about the vacuole membrane proteins mediating these processes in any host-pathogen interaction. During a screen for monoclonal antibodies against novel surface or secreted proteins of Toxoplasma gondii, we identified ROP4, a previously uncharacterized member of the ROP2 family of proteins. We report here on the sequence, posttranslational processing, and subcellular localization of ROP4, a type I transmembrane protein. Mature, processed ROP4 is localized to the rhoptries, secretory organelles at the apical end of the parasite, and is secreted from the parasite during host cell invasion. Released ROP4 associates with the vacuole membrane and becomes phosphorylated in the infected cell. Similar results are seen with ROP2. Further analysis of ROP4 showed it to be phosphorylated on multiple sites, a subset of which result from the action of either host cell protein kinase(s) or parasite kinase(s) activated by host cell factors. The localization and posttranslational modification of ROP4 and other members of the ROP2 family of proteins within the infected cell make them well situated to play important roles in vacuole membrane function.


Molecular and Biochemical Parasitology | 2000

Identification and molecular characterization of GRA8, a novel, proline-rich, dense granule protein of Toxoplasma gondii.

Kimberly L. Carey; Carolyn G. Donahue; Gary E. Ward

We have generated two monoclonal antibodies (MAbs 17.9 and A3.2) against Toxoplasma gondii, both of which localize to the dense granules of tachyzoites by immunoelectron microscopy. MAb 17.9 is directed against GRA6, a previously described 32 kDa dense granule protein. MAb A3.2 is directed against a novel 38 kDa dense granule protein, which we refer to as GRA8. GRA8 is released into the parasitophorous vacuole during or shortly after invasion and associates with the periphery of the vacuole. The cDNA sequence encoding GRA8 was determined by screening a T. gondii cDNA expression library with MAb A3.2. The deduced amino acid sequence of GRA8 consists of a polypeptide of 267 amino acids, with no significant homology to any other known protein. The sequence contains an amino terminal signal peptide, three degenerate proline-rich repeats in the central region and a potential transmembrane domain near the carboxy terminus. The most striking feature of GRA8 is its remarkably high proline content (24%).


Eukaryotic Cell | 2009

GAP45 PHOSPHORYLATION CONTROLS ASSEMBLY OF THE TOXOPLASMA MYOSIN XIV COMPLEX

Stacey D. Gilk; Elizabeth Gaskins; Gary E. Ward; Con J. M. Beckers

ABSTRACT Toxoplasma gondii motility is powered by the myosin XIV motor complex, which consists of the myosin XIV heavy chain (MyoA), the myosin light chain (MLC1), GAP45, and GAP50, the membrane anchor of the complex. MyoA, MLC1, and GAP45 are initially assembled into a soluble complex, which then associates with GAP50, an integral membrane protein of the parasite inner membrane complex. While all proteins in the myosin XIV motor complex are essential for parasite survival, the specific role of GAP45 remains unclear. We demonstrate here that final assembly of the motor complex is controlled by phosphorylation of GAP45. This protein is phosphorylated on multiple residues, and by using mass spectroscopy, we have identified two of these, Ser163 and Ser167. The importance of these phosphorylation events was determined by mutation of Ser163 and Ser167 to Glu and Ala residues to mimic phosphorylated and nonphosphorylated residues, respectively. Mutation of Ser163 and Ser167 to either Ala or Glu residues does not affect targeting of GAP45 to the inner membrane complex or its association with MyoA and MLC1. Mutation of Ser163 and Ser167 to Ala residues also does not affect assembly of the mutant GAP45 protein into the myosin motor complex. Mutation of Ser163 and Ser167 to Glu residues, however, prevents association of the MyoA-MLC1-GAP45 complex with GAP50. These observations indicate that phosphorylation of Ser163 and Ser167 in GAP45 controls the final step in assembly of the myosin XIV motor complex.


Infection and Immunity | 2002

Clostridium septicum Alpha-Toxin Is Active against the Parasitic Protozoan Toxoplasma gondii and Targets Members of the SAG Family of Glycosylphosphatidylinositol-Anchored Surface Proteins

Michael J. Wichroski; Jody Melton; Carolyn G. Donahue; Rodney K. Tweten; Gary E. Ward

ABSTRACT As is the case with many other protozoan parasites, glycosylphosphatidylinositol (GPI)-anchored proteins dominate the surface of Toxoplasma gondii tachyzoites. The mechanisms by which T. gondii GPI-anchored proteins are synthesized and transported through the unusual triple-membrane structure of the parasite pellicle to the plasma membrane remain largely unknown. As a first step in developing tools to study these processes, we show here that Clostridium septicum alpha-toxin, a pore-forming toxin that targets GPI-anchored protein receptors on the surface of mammalian cells, is active against T. gondii tachyzoites (50% effective concentration, 0.2 nM). Ultrastructural studies reveal that a tight physical connection between the plasma membrane and the underlying membranes of the inner membrane complex is locally disrupted by toxin treatment, resulting in a massive outward extension of the plasma membrane and ultimately lysis of the parasite. Toxin treatment also causes swelling of the parasite endoplasmic reticulum, providing the first direct evidence that alpha-toxin is a vacuolating toxin. Alpha-toxin binds to several parasite GPI-anchored proteins, including surface antigen 3 (SAG3) and SAG1. Interestingly, differences in the toxin-binding profiles between the virulent RH and avirulent P strain were observed. Alpha-toxin may prove to be a powerful experimental tool for molecular genetic analysis of GPI anchor biosynthesis and GPI-anchored protein trafficking in T. gondii and other susceptible protozoa.

Collaboration


Dive into the Gary E. Ward's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge