Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary Eugene Rochau is active.

Publication


Featured researches published by Gary Eugene Rochau.


Archive | 2010

Operation and analysis of a supercritical CO2 Brayton cycle.

Steven A. Wright; Ross F. Radel; Milton E. Vernon; Paul S. Pickard; Gary Eugene Rochau

Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for use with solar, nuclear or fossil heat sources. The focus of this work has been on the supercritical CO{sub 2} cycle (S-CO2) which has the potential for high efficiency in the temperature range of interest for these heat sources, and is also very compact, with the potential for lower capital costs. The first step in the development of these advanced cycles was the construction of a small scale Brayton cycle loop, funded by the Laboratory Directed Research & Development program, to study the key issue of compression near the critical point of CO{sub 2}. This document outlines the design of the small scale loop, describes the major components, presents models of system performance, including losses, leakage, windage, compressor performance, and flow map predictions, and finally describes the experimental results that have been generated.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2012

Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle

Thomas M. Conboy; Steven A. Wright; James Jay Pasch; Darryn Fleming; Gary Eugene Rochau; Robert Fuller

Supercritical CO 2 (S-CO 2 ) power cycles offer the potential for better overall plant economics due to their high power conversion efficiency over a moderate range of heat source temperatures, compact size, and potential use of standard materials in construction. Sandia National Labs (Albuquerque, NM) and the U.S. Department of Energy (DOE-NE) are in the process of constructing and operating a megawatt-scale supercritical CO 2 split-flow recompression Brayton cycle with contractor Barber-Nichols Inc. (Arvada, CO). This facility can be counted among the first and only S-CO 2 power producing Brayton cycles anywhere in the world. The Sandia-DOE test-loop has recently concluded a phase of construction that has substantially upgraded the facility by installing additional heaters, a second recuperating printed circuit heat exchanger (PCHE), more waste heat removal capability, higher capacity load banks, higher temperature piping, and more capable scavenging pumps to reduce windage within the turbomachinery. With these additions, the loop has greatly increased its potential for electrical power generation, and its ability to reach higher temperatures. To date, the loop has been primarily operated as a simple recuperated Brayton cycle, meaning a single turbine, single compressor, and undivided flow paths. In this configuration, the test facility has begun to realize its upgraded capacity by achieving new records in turbine inlet temperature (650°F/615 K), shaft speed (52,000 rpm), pressure ratio (1.65), flow rate (2.7 kg/s), and electrical power generated (20 kWe). Operation at higher speeds, flow rates, pressures, and temperatures has allowed a more revealing look at the performance of essential power cycle components in a supercritical CO 2 working fluid, including recuperation and waste heat rejection heat exchangers (PCHEs), turbines and compressors, bearings and seals, as well as auxiliary equipment. In this report, performance of these components to date will be detailed, including a discussion of expected operational limits as higher speeds and temperatures are approached.


Fusion Science and Technology | 2005

Development Path for Z-Pinch IFE

C.L. Olson; Gary Eugene Rochau; Stephen A. Slutz; Charles W. Morrow; R. Olson; M. E. Cuneo; D.L. Hanson; G. Bennett; T. W. L. Sanford; J. E. Bailey; W. A. Stygar; Roger A. Vesey; T.A. Mehlhorn; K.W. Struve; M.G. Mazarakis; M. E. Savage; T.D. Pointon; M. Kiefer; S. E. Rosenthal; K. Cochrane; L. Schneider; S. Glover; K.W. Reed; Diana Grace Schroen; C. Farnum; M. Modesto; D. Oscar; L. Chhabildas; J. Boyes; Virginia Vigil

Abstract The long-range goal of the Z-Pinch IFE program is to produce an economically-attractive power plant using high-yield z-pinch-driven targets (~3GJ) with low rep-rate per chamber (~0.1 Hz). The present mainline choice for a Z-Pinch IFE power plant uses an LTD (Linear Transformer Driver) repetitive pulsed power driver, a Recyclable Transmission Line (RTL), a dynamic hohlraum z-pinch-driven target, and a thick-liquid wall chamber. The RTL connects the pulsed power driver directly to the z-pinch-driven target, and is made from frozen coolant or a material that is easily separable from the coolant (such as carbon steel). The RTL is destroyed by the fusion explosion, but the RTL materials are recycled, and a new RTL is inserted on each shot. A development path for Z-Pinch IFE has been created that complements and leverages the NNSA DP ICF program. Funding by a U.S. Congressional initiative of


Archive | 2011

Supercritical CO2 direct cycle Gas Fast Reactor (SC-GFR) concept.

Steven A. Wright; Edward J. Parma; Ahti Jorma Suo-Anttila; Ahmad Al Rashdan; Pavel V. Tsvetkov; Milton E. Vernon; Darryn Fleming; Gary Eugene Rochau

4M for FY04 through NNSA DP is supporting assessment and initial research on (1) RTLs, (2) repetitive pulsed power drivers, (3) shock mitigation [because of the high yield targets], (4) planning for a proof-of-principle full RTL cycle demonstration [with a 1 MA, 1 MV, 100 ns, 0.1 Hz driver], (5) IFE target studies for multi-GJ yield targets, and (6) z-pinch IFE power plant engineering and technology development. Initial results from all areas of this research are discussed.


Nuclear Fusion | 2004

A cost-effective target supply for inertial fusion energy

D. T. Goodin; N.B. Alexander; L.C. Brown; D.T. Frey; R. Gallix; C. R. Gibson; J.L. Maxwell; A. Nobile; C.L. Olson; R. Raffray; Gary Eugene Rochau; D. G. Schroen; M. S. Tillack; W.S. Rickman; B. A. Vermillion

This report describes the supercritical carbon dioxide (S-CO{sub 2}) direct cycle gas fast reactor (SC-GFR) concept. The SC-GFR reactor concept was developed to determine the feasibility of a right size reactor (RSR) type concept using S-CO{sub 2} as the working fluid in a direct cycle fast reactor. Scoping analyses were performed for a 200 to 400 MWth reactor and an S-CO{sub 2} Brayton cycle. Although a significant amount of work is still required, this type of reactor concept maintains some potentially significant advantages over ideal gas-cooled systems and liquid metal-cooled systems. The analyses presented in this report show that a relatively small long-life reactor core could be developed that maintains decay heat removal by natural circulation. The concept is based largely on the Advanced Gas Reactor (AGR) commercial power plants operated in the United Kingdom and other GFR concepts.


Archive | 2012

Supercritical CO2 recompression Brayton cycle : completed assembly description.

James Jay Pasch; Thomas M. Conboy; Darryn Fleming; Gary Eugene Rochau

A central feature of an inertial fusion energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. This is true whether the driver is a laser system, heavy ion beams or Z-pinch system. The IFE target fabrication, injection and tracking programmes are focusing on methods that will scale to mass production. We are working closely with target designers, and power plant systems specialists, to make specifications and material selections that will satisfy a wide range of required and desirable target characteristics. One-of-a-kind capsules produced for today’s inertial confinement fusion experiments are estimated to cost about US


Fusion Science and Technology | 2005

Demonstrating a Target Supply for Inertial Fusion Energy

D. T. Goodin; N.B. Alexander; L.C. Brown; D. A. Callahan; Peter S. Ebey; D.T. Frey; R. Gallix; Drew A. Geller; C. R. Gibson; James K. Hoffer; J.L. Maxwell; Barry McQuillan; A. Nikroo; A. Nobile; C.L. Olson; R. Raffray; W.S. Rickman; Gary Eugene Rochau; D. G. Schroen; J. D. Sethian; John D. Sheliak; J. Streit; M. S. Tillack; B. A. Vermillion; E.I. Valmianski

2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have suggested a cost goal of about


Archive | 2007

Strengthening the foundations of proliferation assessment tools.

Paul E. Rexroth; David H. Saltiel; Gary Eugene Rochau; Virginia D. Cleary; Selena Ng; Dominique Greneche; Don Giannangeli; William S. Charlton; David G. Ford

0.25–0.30 for each injected target (corresponding to ∼10% of the ‘electricity value’ in a target). While a four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the design, specifications, requirements and proposed manufacturing processes for the future for laser fusion, heavy ion fusion and Z-pinch driven targets. These target manufacturing processes have been developed—and are proposed—based on the unique materials science and technology programmes that are ongoing for each of the target concepts. We describe the paradigm shifts in target manufacturing methodologies that will be needed to achieve orders of magnitude reductions in target costs, and summarize the results of ‘nth-of-a-kind’ plant layouts and cost estimates for future IFE power plant fuelling. These engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for electricity production.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2014

Dry-Cooled Supercritical CO2 Power for Advanced Nuclear Reactors

Tom Conboy; Matt Carlson; Gary Eugene Rochau

Through multi-year funding from DOE-NE, Sandia National Labs supercritical carbon dioxide (SCO2) closed Brayton cycle (CBC) research and development team have recently overseen the completion of the SCO2 CBC recompression test assembly (TA), and delivery from the development contractor’s facility to Sandia, Albuquerque. The primary components of the completed TA include two turboalternator-compressors and associated motor/controllers, three printed circuit heat exchangers, and six shell-and-tube heaters and associated controllers. Principal supporting components include a cooling tower, electricity-dissipating load bank, and leakage flow management equipment. With this milestone completed, significant increase in CBC R&D is anticipated with the objective of advancing the technology readiness level of components seen by industry as immature. This report presents detailed descriptions of all components and operating software necessary to operate the recompression CBC.


Fusion Science and Technology | 2003

A Concept for Containing Inertial Fusion Energy Pulses in a Z-Pinch-Driven Power Plant

Gary Eugene Rochau; Charles W. Morrow; Peter J. Pankuch

Abstract A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The technology to economically manufacture and then position cryogenic targets at chamber center is at the heart of future IFE power plants. For direct drive IFE (laser fusion), energy is applied directly to the surface of a spherical CH polymer capsule containing the deuterium-tritium (DT) fusion fuel at approximately 18K. For indirect drive (heavy ion fusion, HIF), the target consists of a similar fuel capsule within a cylindrical metal container or ’’hohlraum’’ which converts the incident driver energy into x-rays to implode the capsule. For either target, it must be accurately delivered to the target chamber center at a rate of about 5-10Hz, with a precisely predicted target location. Future successful fabrication and injection systems must operate at the low cost required for energy production (about

Collaboration


Dive into the Gary Eugene Rochau's collaboration.

Top Co-Authors

Avatar

Charles W. Morrow

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

C.L. Olson

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Stephen A. Slutz

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Steven A. Wright

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Darryn Fleming

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Thomas M. Conboy

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Naoko Inoue

Japan Nuclear Cycle Development Institute

View shared research outputs
Top Co-Authors

Avatar

Donald B. King

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Mark S. Derzon

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge