Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary F. Nieman is active.

Publication


Featured researches published by Gary F. Nieman.


Shock | 2010

Peritoneal negative pressure therapy prevents multiple organ injury in a chronic porcine sepsis and ischemia/reperfusion model.

Brian D. Kubiak; Scott P. Albert; Louis A. Gatto; Kathleen Snyder; Kristopher G. Maier; Christopher J. Vieau; Shreyas Roy; Gary F. Nieman

Sepsis and hemorrhage can result in injury to multiple organs and is associated with an extremely high rate of mortality. We hypothesized that peritoneal negative pressure therapy (NPT) would reduce systemic inflammation and organ damage. Pigs (n = 12) were anesthetized and surgically instrumented for hemodynamic monitoring. Through a laparotomy, the superior mesenteric artery was clamped for 30 min. Feces was mixed with blood to form a fecal clot that was placed into the peritoneum, and the abdomen was closed. All subjects were treated with standard isotonic fluid resuscitation, wide spectrum antibiotics, and mechanical ventilation, and were monitored for 48 h. Animals were separated into two groups 12 h (T12) after injury: for NPT (n = 6), an abdominal wound vacuum dressing was placed in the laparotomy, and negative pressure (−125 mmHg) was applied (T12 - T48), whereas passive drainage (n = 6) was identical to the NPT group except the abdomen was allowed to passively drain. Negative pressure therapy removed a significantly greater volume of ascites (860 ± 134 mL) than did passive drainage (88 ± 56 mL). Systemic inflammation (e.g. TNF-&agr;, IL-1&bgr;, IL-6) was significantly reduced in the NPT group and was associated with significant improvement in intestine, lung, kidney, and liver histopathology. Our data suggest NPT efficacy is partially due to an attenuation of peritoneal inflammation by the removal of ascites. However, the exact mechanism needs further elucidation. The clinical implication of this study is that sepsis/trauma can result in an inflammatory ascites that may perpetuate organ injury; removal of the ascites can break the cycle and reduce organ damage.


Journal of Surgical Research | 2003

Metalloproteinase inhibition reduces lung injury and improves survival after cecal ligation and puncture in rats

Jay Steinberg; Jeff Halter; Henry J. Schiller; Monica Dasilva; Steve K. Landas; Louis A. Gatto; Päivi Maisi; Timo Sorsa; Minna M. Rajamäki; Hsi-Ming Lee; Gary F. Nieman

BACKGROUND Neutrophil activation with concomitant matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) release has been implicated in the development of sepsis-induced acute lung injury. We hypothesized that COL-3, a chemically modified tetracycline known to inhibit MMP-2 and MMP-9, would reduce lung injury and improve survival in rats following cecal ligation and puncture (CLP). METHODS Sprague-Dawley rats were separated into five groups: 1) sham CLP+ carboxymethylcellulose (CMC; vehicle for COL-3, n = 6); 2) sham CLP + COL-3 (n = 6); 3) CLP + CMC (n = 10); 4) CLP + single-dose (SD) COL-3 administered concomitant with CLP (n = 9); and 5) CLP + multiple-dose (MD) COL-3 administered concomitant with CLP and at 24 h after CLP (n = 15). Rats were sacrificed at 168 h (7 days) or immediately after death, with survival defined as hours after CLP. Histological lung assessment was made based on neutrophil infiltration, alveolar wall thickening, and intraalveolar edema fluid. Lung MMP-2 and MMP-9 levels were assessed by immunohistochemistry. MMP-2 and MMP-9 levels were correlated with survival by simple regression analysis. RESULTS The mortality of rats in the cecal ligation and puncture without treatment group (CLP + CMC) was 70% at 168 h. A single dose of COL-3 in the CLP + COL-3 (SD) group significantly reduced mortality to 54%. Furthermore, with a repeat dose of COL-3 at 24 h after CLP, mortality was significantly reduced to 33%. Pathologic lung changes seen histologically in the CLP + CMC group were significantly reduced by COL-3. A significant reduction in lung tissue levels of MMP-2 and MMP-9 was noted in both groups treated with COL-3. Reduction of MMP-2 and MMP-9 levels correlated with improved survival. CONCLUSION Inhibition of MMP-2 and MMP-9 by COL-3 in a clinically relevant model of sepsis-induced acute lung injury reduces pulmonary injury and improves survival in a dose-dependent fashion. Our results suggest that prophylactic treatment with COL-3 in high-risk patients may reduce the morbidity and mortality associated with sepsis-induced acute respiratory distress syndrome.


The Annals of Thoracic Surgery | 1999

Multiple sequential insults cause post-pump syndrome

Anthony Picone; Charles J. Lutz; Christine Finck; David E. Carney; Louis A. Gatto; Andrew M. Paskanik; Bruce Searles; Kathy Snyder; Gary F. Nieman

BACKGROUND We hypothesize that post-pump syndrome (PPS) following cardiopulmonary bypass (CPB) can be caused by multiple minor insults and that the mechanism of PPS is a priming and subsequent activation of polymorphonuclear (PMN) leukocytes. In this study extensive pathophysiologic and morphometric assessment was undertaken in a porcine model of sequential insult PPS. METHODS Pigs were anesthetized, placed on a ventilator, instrumented for measurements of hemodynamic function, and separated into five groups: (1) Control (n = 4)--surgery only, (2) CPB (n = 4)--placed on femoral-femoral hypothermic (28 degrees C) bypass for 1 h, (3) LPS (n = 6)--underwent sham CPB followed by infusion of low dose endotoxin [E. coli lipopolysaccharide (LPS-1 microg/kg)], (4) Heparin + protamine + LPS (HP + LPS, n = 4)--were heparinized without CPB for 1 h, following which protamine and LPS were infused and (5) CPB + LPS (n = 8)--subjected to both CPB and LPS. RESULTS Only CPB + LPS resulted in acute respiratory distress typical of PPS as indicated by a significant decrease in PaO2 and increase in intrapulmonary shunt fraction (p<0.05). CPB + LPS significantly increased tissue density and the number of sequestered monocytes and PMNs (p<0.05) above all other groups. Alveolar macrophages (AM) increased equally in all groups receiving LPS. CONCLUSIONS CPB primes the inflammatory system causing pulmonary PMN sequestration without lung injury. Exposure to an otherwise benign dose of endotoxin results in activation of the sequestered PMNs causing PPS. This study confirms that PPS can be caused by multiple minor insults.


Shock | 2013

Early airway pressure release ventilation prevents ARDS-a novel preventive approach to lung injury.

Shreyas Roy; Nader Habashi; Benjamin Sadowitz; Penny Andrews; Lin Ge; Guirong Wang; Preyas Roy; Auyon Ghosh; Michael Kuhn; Joshua Satalin; Louis A. Gatto; Xin Lin; David A. Dean; Yoram Vodovotz; Gary F. Nieman

ABSTRACT Acute respiratory distress syndrome (ARDS) afflicts 200,000 patients annually with a mortality rate of 30% to 60% despite wide use of low tidal volume (LTV) ventilation, the present standard of care. High-permeability alveolar edema and instability occur early in the development of ARDS, before clinical signs of lung injury, and represent potential targets for therapy. We hypothesize that early application of a protective ventilation strategy (airway pressure release ventilation [APRV]) will stabilize alveoli and reduce alveolar edema, preventing the development of ARDS. Yorkshire pigs (30–40 kg) were anesthetized and subjected to two-hit injury: (a) intestinal ischemia-reperfusion, (b) peritoneal sepsis, or sham surgery. Following surgery, pigs were randomized into APRV (n = 4), according to current published guidelines for APRV; LTV ventilation (n = 3), using the current published ARDS Network guidelines (6 mL/kg); or sham (n = 5). The clinical care of all pigs was administered per the Surviving Sepsis Campaign guidelines. Animals were killed, and necropsy performed at 48 h. Arterial blood gases were measured to assess for the development of clinical lung injury. Lung tissue epithelial cadherin (E-cadherin) was measured to assess alveolar permeability. Bronchoalveolar lavage fluid (BALF) surfactant protein A was measured to assess alveolar stability. Lung edema content and histopathology were analyzed at 48 h. Airway pressure release ventilation pigs did not develop ARDS. In contrast, pigs in the LTV ventilation met ARDS criteria (PaO2/FIO2 ratio) (APRV: baseline = 471 ± 16; 48 h = 392 ± 8; vs. LTV ventilation: baseline = 551 ± 28; 48 h = 138 ± 88; P < 0.001). Airway pressure release ventilation preserved alveolar epithelial integrity demonstrated by higher levels of E-cadherin in lung tissue as compared with LTV ventilation (P < 0.05). Surfactant protein A levels were higher in BALF from the APRV group, suggesting APRV preserved alveolar stability. Quantitative histologic scoring showed improvements in all stigmata of ARDS in the APRV group versus the LTV ventilation (P < 0.05). Airway pressure release ventilation had significantly lower lung edema (wet-dry weight) than LTV ventilation (P < 0.05). Protective ventilation with APRV immediately following injury prevents development of ARDS. Reduction in lung edema, preservation of lung E-cadherin, and surfactant protein A abundance in BALF suggest that APRV attenuates lung permeability, edema, and surfactant degradation. Protective ventilation could change the clinical paradigm from supportive care for ARDS with LTV ventilation to preventing development of ARDS with APRV.


Journal of Trauma-injury Infection and Critical Care | 2013

Early application of airway pressure release ventilation may reduce mortality in high-risk trauma patients: a systematic review of observational trauma ARDS literature.

Penny Andrews; Shiber; Jaruga-Killeen E; Shreyas Roy; Benjamin Sadowitz; O'Toole Rv; Louis A. Gatto; Gary F. Nieman; Thomas M. Scalea; Nader Habashi

BACKGROUND Adult respiratory distress syndrome is often refractory to treatment and develops after entering the health care system. This suggests an opportunity to prevent this syndrome before it develops. The objective of this study was to demonstrate that early application of airway pressure release ventilation in high-risk trauma patients reduces hospital mortality as compared with similarly injured patients on conventional ventilation. METHODS Systematic review of observational data in patients who received conventional ventilation in other trauma centers were compared with patients treated with early airway pressure release ventilation in our trauma center. Relevant studies were identified in a PubMed and MEDLINE search from 1995 to 2012 and included prospective and retrospective observational and cohort studies enrolling 100 or more adult trauma patients with reported adult respiratory distress syndrome incidence and mortality data. RESULTS Early airway pressure release ventilation as compared with the other trauma centers represented lower mean adult respiratory distress syndrome incidence (14.0% vs. 1.3%) and in-hospital mortality (14.1% vs. 3.9%). CONCLUSION These data suggest that early airway pressure release ventilation may prevent progression of acute lung injury in high-risk trauma patients, reducing trauma-related adult respiratory distress syndrome mortality. LEVEL OF EVIDENCE Systematic review, level IV.


JAMA Surgery | 2014

Mechanical Breath Profile of Airway Pressure Release Ventilation: The Effect on Alveolar Recruitment and Microstrain in Acute Lung Injury

Michaela Kollisch-Singule; Bryanna Emr; Bradford J. Smith; Shreyas Roy; Sumeet Jain; Joshua Satalin; Kathy Snyder; Penny Andrews; Nader Habashi; Jason H. T. Bates; William Marx; Gary F. Nieman; Louis A. Gatto

IMPORTANCE Improper mechanical ventilation settings can exacerbate acute lung injury by causing a secondary ventilator-induced lung injury. It is therefore important to establish the mechanism by which the ventilator induces lung injury to develop protective ventilation strategies. It has been postulated that the mechanism of ventilator-induced lung injury is the result of heterogeneous, elevated strain on the pulmonary parenchyma. Acute lung injury has been associated with increases in whole-lung macrostrain, which is correlated with increased pathology. However, the effect of mechanical ventilation on alveolar microstrain remains unknown. OBJECTIVE To examine whether the mechanical breath profile of airway pressure release ventilation (APRV), consisting of a prolonged pressure-time profile and brief expiratory release phase, reduces microstrain. DESIGN, SETTING, AND PARTICIPANTS In a randomized, nonblinded laboratory animal study, rats were randomized into a controlled mandatory ventilation group (n = 3) and an APRV group (n = 3). Lung injury was induced by polysorbate lavage. A thoracotomy was performed and an in vivo microscope was placed on the lungs to measure alveolar mechanics. MAIN OUTCOMES AND MEASURES In the controlled mandatory ventilation group, multiple levels of positive end-expiratory pressure (PEEP; 5, 10, 16, 20, and 24 cm H2O) were tested. In the APRV group, decreasing durations of expiratory release (time at low pressure [T(low)]) were tested. The T(low) was set to achieve ratios of termination of peak expiratory flow rate (T-PEFR) to peak expiratory flow rate (PEFR) of 10%, 25%, 50%, and 75% (the smaller this ratio is [ie, 10%], the more time the lung is exposed to low pressure during the release phase, which decreases end-expiratory lung volume and potentiates derecruitment). Alveolar perimeters were measured at peak inspiration and end expiration using digital image analysis, and strain was calculated by normalizing the change in alveolar perimeter length to the original length. Macrostrain was measured by volume displacement. RESULTS Higher PEEP (16-24 cm H2O) and a brief T(low) (APRV T-PEFR to PEFR ratio of 75%) reduced microstrain. Microstrain was minimized with an APRV T-PEFR to PEFR ratio of 75% (mean [SEM], 0.05 [0.03]) and PEEP of 16 cm H2O (mean [SEM], 0.09 [0.08]), but an APRV T-PEFR to PEFR ratio of 75% also promoted alveolar recruitment compared with PEEP of 16 cm H2O (mean [SEM] total inspiratory area, 52.0% [2.9%] vs 29.4% [4.3%], respectively; P < .05). Whole-lung strain was correlated with alveolar microstrain in tested settings (P < .05) except PEEP of 16 cm H2O (P > .05). CONCLUSIONS AND RELEVANCE Increased positive-end expiratory pressure and reduced time at low pressure (decreased T(low)) reduced alveolar microstrain. Reduced microstrain and improved alveolar recruitment using an APRV T-PEFR to PEFR ratio of 75% may be the mechanism of lung protection seen in previous clinical and animal studies.


Shock | 2014

Removal of inflammatory ascites is associated with dynamic modification of local and systemic inflammation along with prevention of acute lung injury: in vivo and in silico studies.

Bryanna Emr; David Sadowsky; Nabil Azhar; Louis A. Gatto; Gary An; Gary F. Nieman; Yoram Vodovotz

ABSTRACT Background: Sepsis-induced inflammation in the gut/peritoneal compartment occurs early in sepsis and can lead to acute lung injury (ALI). We have suggested that inflammatory ascites drives the pathogenesis of ALI and that removal of ascites with an abdominal wound vacuum prevents ALI. We hypothesized that the time- and compartment-dependent changes in inflammation that determine this process can be discerned using principal component analysis (PCA) and Dynamic Bayesian Network (DBN) inference. Methods: To test this hypothesis, data from a previous study were analyzed using PCA and DBN. In that study, two groups of anesthetized, ventilated pigs were subjected to experimental sepsis via intestinal ischemia/reperfusion and placement of a peritoneal fecal clot. The control group (n = 6) had the abdomen opened at 12 h after injury (T12) with attachment of a passive drain. The peritoneal suction treatment (PST) group (n = 6) was treated in an identical fashion except that a vacuum was applied to the peritoneal cavity at T12 to remove ascites and maintained until T48. Multiple inflammatory mediators were measured in ascites and plasma and related to lung function (PaO2/FIO2 ratio and oxygen index) using PCA and DBN. Results: Peritoneal suction treatment prevented ALI based on lung histopathology, whereas control animals developed ALI. Principal component analysis revealed that local to the insult (i.e., ascites), primary proinflammatory cytokines play a decreased role in the overall response in the treatment group as compared with control. In both groups, multiple, nested positive feedback loops were inferred from DBN, which included interrelated roles for bacterial endotoxin, interleukin 6, transforming growth factor &bgr;1, C-reactive protein, PaO2/FIO2 ratio, and oxygen index. von Willebrand factor was an output in control, but not PST, ascites. Conclusions: These combined in vivo and in silico studies suggest that in this clinically realistic paradigm of sepsis, endotoxin drives the inflammatory response in the ascites, interplaying with lung dysfunction in a feed-forward loop that exacerbates inflammation and leads to endothelial dysfunction, systemic spillover, and ALI; PST partially modifies this process.


JAMA Surgery | 2013

Airway Pressure Release Ventilation Prevents Ventilator-Induced Lung Injury in Normal Lungs

Bryanna Emr; Louis A. Gatto; Shreyas Roy; Joshua Satalin; Auyon Ghosh; Kathy Snyder; Penny Andrews; Nader Habashi; William Marx; Lin Ge; Guirong Wang; David A. Dean; Yoram Vodovotz; Gary F. Nieman

IMPORTANCE Up to 25% of patients with normal lungs develop acute lung injury (ALI) secondary to mechanical ventilation, with 60% to 80% progressing to acute respiratory distress syndrome (ARDS). Once established, ARDS is treated with mechanical ventilation that can paradoxically elevate mortality. A ventilation strategy that reduces the incidence of ARDS could change the clinical paradigm from treatment to prevention. OBJECTIVES To demonstrate that (1) mechanical ventilation with tidal volume (VT) and positive end-expiratory pressure (PEEP) settings used routinely on surgery patients causes ALI/ARDS in normal rats and (2) preemptive application of airway pressure release ventilation (APRV) blocks drivers of lung injury (ie, surfactant deactivation and alveolar edema) and prevents ARDS. DESIGN, SETTING, AND SUBJECTS Rats were anesthetized and tracheostomy was performed at State University of New York Upstate Medical University. Arterial and venous lines, a peritoneal catheter, and a rectal temperature probe were inserted. Animals were randomized into 3 groups and followed up for 6 hours: spontaneous breathing ventilation (SBV, n = 5), continuous mandatory ventilation (CMV, n = 6), and APRV (n = 5). Rats in the CMV group were ventilated with Vt of 10 cc/kg and PEEP of 0.5 cm H2O. Airway pressure release ventilation was set with a P(High) of 15 to 20 cm H2O; P(Low) was set at 0 cm H2O. Time at P(High) (T(High)) was 1.3 to 1.5 seconds and a T(Low) was set to terminate at 75% of the peak expiratory flow rate (0.11-0.14 seconds), creating a minimum 90% cycle time spent at P(High). Bronchoalveolar lavage fluid and lungs were harvested for histopathologic analysis at necropsy. RESULTS Acute lung injury/ARDS developed in the CMV group (mean [SE] PaO2/FiO2 ratio, 242.96 [24.82]) and was prevented with preemptive APRV (mean [SE] PaO2/FIO2 ratio, 478.00 [41.38]; P < .05). Airway pressure release ventilation also significantly reduced histopathologic changes and bronchoalveolar lavage fluid total protein (endothelial permeability) and preserved surfactant proteins A and B concentrations as compared with the CMV group. CONCLUSIONS AND RELEVANCE Continuous mandatory ventilation in normal rats for 6 hours with Vt and PEEP settings similar to those of surgery patients caused ALI. Preemptive application of APRV blocked early drivers of lung injury, preventing ARDS. Our data suggest that APRV applied early could reduce the incidence of ARDS in patients at risk.


Expert Review of Anti-infective Therapy | 2011

Lung injury induced by sepsis: lessons learned from large animal models and future directions for treatment

Benjamin Sadowitz; Shreyas Roy; Louis A. Gatto; Nader Habashi; Gary F. Nieman

Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) remain common complications of sepsis. Unfortunately, development of effective pharmacologic and ventilatory treatment strategies for sepsis-induced ALI/ARDS has not made significant progress over the past several decades. One of the major reasons for this conundrum involves the animal models used as platforms for testing new treatment strategies. High-fidelity, clinically translational, large animal models are essential for developing treatments that will ultimately be successful in human clinical trials. Additionally, treatment strategies purely based on pharmacologic intervention are largely destined for failure as the redundancies in the systemic inflammatory response largely negate the effectiveness of a single-action drug. Conversely, a treatment strategy based on the appropriate use of mechanical ventilation affects lung physiology on a breath-to-breath basis and has the potential to treat, and even prevent, the ALI/ARDS associated with sepsis.


Shock | 2013

Preemptive application of airway pressure release ventilation prevents development of acute respiratory distress syndrome in a rat traumatic hemorrhagic shock model.

Shreyas Roy; Bryanna Emr; Benjamin Sadowitz; Louis A. Gatto; Auyon Ghosh; Joshua Satalin; Kathy Snyder; Lin Ge; Guirong Wang; William Marx; David A. Dean; Penny Andrews; Anil Singh; Thomas M. Scalea; Nader Habashi; Gary F. Nieman

ABSTRACT Background: Once established, the acute respiratory distress syndrome (ARDS) is highly resistant to treatment and retains a high mortality. We hypothesized that preemptive application of airway pressure release ventilation (APRV) in a rat model of trauma/hemorrhagic shock (T/HS) would prevent ARDS. Methods: Rats were anesthetized, instrumented for hemodynamic monitoring, subjected to T/HS, and randomized into two groups: (a) volume cycled ventilation (VC) (n = 5, tidal volume 10 mL/kg; positive end-expiratory pressure 0.5 cmH2O) or (b) APRV (n = 4, Phigh = 15–20 cmH2O; Thigh = 1.3–1.5 s to achieve 90% of the total cycle time; Tlow = 0.11–0.14 s, which was set to 75% of the peak expiratory flow rate; Plow = 0 cmH2O). Study duration was 6 h. Results: Airway pressure release ventilation prevented lung injury as measured by PaO2/FIO2 (VC 143.3 ± 42.4 vs. APRV 426.8 ± 26.9, P < 0.05), which correlated with a significant decrease in histopathology as compared with the VC group. In addition, APRV resulted in a significant decrease in bronchoalveolar lavage fluid total protein, increased surfactant protein B concentration, and an increase in epithelial cadherin tissue expression. In vivo microscopy demonstrated that APRV significantly improved alveolar patency and stability as compared with the VC group. Conclusions: Our findings demonstrate that preemptive mechanical ventilation with APRV attenuates the clinical and histologic lung injury associated with T/HS. The mechanism of injury prevention is related to preservation of alveolar epithelial and endothelial integrity. These data support our hypothesis that preemptive APRV, applied using published guidelines, can prevent the development of ARDS.

Collaboration


Dive into the Gary F. Nieman's collaboration.

Top Co-Authors

Avatar

Louis A. Gatto

State University of New York at Cortland

View shared research outputs
Top Co-Authors

Avatar

Shreyas Roy

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Benjamin Sadowitz

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Bryanna Emr

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Joshua Satalin

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Auyon Ghosh

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guirong Wang

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Kathleen Snyder

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Kathy Snyder

State University of New York Upstate Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge