Gary F. Walsh
Boston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gary F. Walsh.
Applied Physics Letters | 2012
Arash Darafsheh; Gary F. Walsh; Luca Dal Negro; Vasily N. Astratov
It is experimentally shown that barium titanate glass microspheres with diameters (D) in the range 2–220 μm and with high refractive index (n ∼ 1.9–2.1) can be used for super-resolution imaging of liquid-immersed nanostructures. Using micron-scale microspheres, we demonstrate an ability to discern the shape of a pattern with a minimum feature size of ∼λ/7, where λ is the illumination wavelength. For spheres with D > 50 μm, the discernible feature sizes were found to increase to ∼λ/4. Detailed data on the resolution, magnification, and field-of-view are presented. This imaging technique can be used in biomedical microscopy, microfluidics, and nanophotonics applications.
Nano Letters | 2013
Gary F. Walsh; Luca Dal Negro
In this communication, we systematically investigate the effects of Fano-type coupling between long-range photonic resonances and localized surface plasmons on the second harmonic generation from periodic arrays of Au nanoparticles arranged in monomer and dimer geometries. Specifically, by scanning the wavelength of an ultrafast tunable pump laser over a large range, we measure the second harmonic excitation spectra of these arrays and demonstrate their tunability with particle size and separation. Moreover, through a comparison with linear optical transmission spectra, which feature asymmetric Fano-type lineshapes, we demonstrate that the second harmonic generation is enhanced when coupled photonic-plasmonic resonances of the arrays are excited at the fundamental pump wavelength, thus boosting the intensity of the electromagnetic near-fields. Our experimental results, which are supported by numerical simulations of linear optical transmission and near-field enhancement spectra based on the Finite Difference Time Domain method, demonstrate a direct correlation between the onset of Fano-type coupling and the enhancement of second harmonic generation in arrays of Au nanoparticles. Our findings enable the engineering of the nonlinear optical response of Fano-type coupled nanoparticle arrays that are relevant to a number of device applications in nonlinear nano-optics and plasmonics, such as on-chip frequency generators, modulators, switchers, and sensors.
Optics Letters | 2010
Carlo Forestiere; Massimo Donelli; Gary F. Walsh; Edoardo Zeni; Giovanni Miano; Luca Dal Negro
We used the particle swarm optimization algorithm, an evolutionary computational technique, to design metal nanoparticle arrays that produce broadband plasmonic field enhancement over the entire visible spectral range. The resulting structures turn out to be aperiodic and feature dense Fourier spectra with many closely packed particle clusters. We conclude that broadband field-enhancement effects in nanoplasmonics can be achieved by engineering aperiodic arrays with a large number of spatial frequencies that provide the necessary interplay between long-range diffractive interactions at multiple length scales and near-field quasi-static coupling within small nanoparticle clusters.
Nano Letters | 2013
Gary F. Walsh; Luca Dal Negro
By systematically investigating the light emission and scattering properties of arrays of Au nanoparticles with varying size and separation, we demonstrate tunability and control of metal photoluminescence and unveil the critical role of near-field plasmonic coupling for the engineering of active metal nanostructures. We show that the decay of photoexcited electron-hole pairs into localized surface plasmons (LSPs) dramatically modifies the Au emission wavelength, line shape, and quantum efficiency depending both on particles size and separation. In particular, in arrays with near-field coupled nanoparticles we demonstrate broad light scattering and emission spectra that scale differently with respect to nanoparticle size due to the enhanced LSP nonradiative decay caused by near-field interparticle coupling. Our experimental results are fully supported by semianalytical extinction simulations based on rigorous coupled wave analysis, which demonstrate the importance of tuning plasmonic near-field coupling for the engineering of active devices based on light emitting arrays of metallic nanoparticles.
Optics Express | 2012
Antonio Capretti; Gary F. Walsh; Salvatore Minissale; Jacob Trevino; Carlo Forestiere; Giovanni Miano; Luca Dal Negro
We demonstrate optical Second Harmonic Generation (SHG) in planar arrays of cylindrical Au nanoparticles arranged in periodic and deterministic aperiodic geometries. In order to understand the respective roles of near-field plasmonic coupling and long-range photonic interactions on the SHG signal, we systematically vary the interparticle separation from 60 nm to distances comparable to the incident pump wavelength. Using polarization-resolved measurements under femtosecond pumping, we demonstrate multipolar SHG signal largely tunable by the array geometry. Moreover, we show that the SHG signal intensity is maximized by arranging Au nanoparticles in aperiodic spiral arrays. The possibility to engineer multipolar SHG in planar arrays of metallic nanoparticles paves the way to the development of novel optical elements for nanophotonics, such as nonlinear optical sensors, compact frequency converters, optical mixers, and broadband harmonic generators on a chip.
Optics Express | 2009
Carlo Forestiere; Gary F. Walsh; Giovanni Miano; Luca Dal Negro
In this paper, we investigate the plasmonic near-field localization and the far-field scattering properties of non-periodic arrays of Ag nanoparticles generated by prime number sequences in two spatial dimensions. In particular, we demonstrate that the engineering of plasmonic arrays with large spectral flatness and particle density is necessary to achieve a high density of electromagnetic hot spots over a broader frequency range and a larger area compared to strongly coupled periodic and quasi-periodic structures. Finally, we study the far-field scattering properties of prime number arrays illuminated by plane waves and we discuss their angular scattering properties. The study of prime number arrays of metal nanoparticles provides a novel strategy to achieve broadband enhancement and localization of plasmonic fields for the engineering of nanoscale nano-antenna arrays and active plasmonic structures.
Optics Express | 2011
Gary F. Walsh; Carlo Forestiere; Luca Dal Negro
Using spectroscopic ellipsometry and analytical multiple scattering theory, we demonstrate significant depolarization of far-field reflected light due to plasmonic near-field concentration in dimer arrays of metallic nanoparticles fabricated by electron beam lithography. By systematically investigating dimer arrays with varying sub-wavelength interparticle separations, we show that the measured depolarization presents a sharp peak at the Rayleigh cutoff condition for efficient in-plane diffraction. Moreover, by investigating the depolarization of reflected light as a function of the excitation angle, we demonstrate that maximum depolarization occurs in the spectral regions of plasmon-enhanced near-fields. Our results demonstrate that far-field reflection measurements encode information on the near-field spectra of complex nanoparticle arrays, and can be utilized to experimentally determine the optimal conditions for the excitation of sub-wavelength plasmonic resonances. The proposed approach opens novel opportunities for the engineering of nanoparticle arrays with optimized enhancement of optical cross sections for spectroscopic and sensing applications.
IEEE Microwave and Wireless Components Letters | 2017
Michael Ghebrebrhan; Francisco J. Aranda; Gary F. Walsh; David Ziegler; Stephen Giardini; Joel Carlson; Brian R. Kimball; Diane M. Steeves; Zhiyu Xia; Shiran Yu; Edward Kingsley; Ramaswamy Nagarajan; Jojit Torcedo; Richard J. Williams; Andrew J. Gatesman
Frequency selective surfaces (FSSs) are ubiquitous on rigid substrates and increasingly on flexible polymeric substrates. Here, we developed a FSS on a textile which is neither rigid nor smooth. We fabricate a textile capable of rejecting the millimeter-wave radiation in a narrowband, while retaining desirable textile properties such as flexibility and breathability. The resonators and resonant wavelength are on the order of the weave pitch. Durability tests are performed and spectral response is measured.
Nanoscale | 2013
Emanuele Francesco Pecora; Gary F. Walsh; Carlo Forestiere; Alex Handin; Eleonora Russo-Averchi; Anna Dalmau-Mallorqui; Ignasi Canales-Mundet; Anna Fontcuberta i Morral; Luca Dal Negro
We demonstrate morphology-dependent second-harmonic generation (SHG) from InAs V-shaped nanomembranes. We show SHG correlation with the nano-wing shape and size, experimentally quantify the SHG efficiency, and demonstrate a maximum SHG enhancement of about 500 compared to the bulk. Experimental data are supported by rigorous calculations of local electromagnetic field spectra.
Optics Express | 2013
Sylvanus Y. Lee; Gary F. Walsh; Luca Dal Negro
We demonstrate successful integration of aperiodic arrays of metal nanoparticles with microfluidics technology for optical sensing using the spectral-colorimetric responses of nanostructured arrays to refractive index variations. Different aperiodic arrays of gold (Au) nanoparticles with varying interparticle separations and Fourier spectral properties are fabricated using Electron Beam Lithography (EBL) and integrated with polydimethylsiloxane (PDMS) microfluidics structures by soft-lithographic micro-imprint techniques. The spectral shifts of scattering spectra and the distinctive modifications of structural color patterns induced by refractive index variations were simultaneously measured inside microfluidic flow cells by dark-field spectroscopy and image correlation analysis in the visible spectral range. The integration of engineered aperiodic arrays of Au nanoparticles with microfluidics devices provides a novel sensing platform with multiplexed spatial-spectral responses for opto-fluidics applications and lab-on-a-chip optical biosensing.