Gary J. Fisher
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gary J. Fisher.
The New England Journal of Medicine | 1997
Gary J. Fisher; Zeng Quan Wang; Subhash C. Datta; James Varani; Sewon Kang; John J. Voorhees
BACKGROUND Long-term exposure to ultraviolet irradiation from sunlight causes premature skin aging (photoaging), characterized in part by wrinkles, altered pigmentation, and loss of skin tone. Photoaged skin displays prominent alterations in the collagenous extracellular matrix of connective tissue. We investigated the role of matrix-degrading metalloproteinases, a family of proteolytic enzymes, as mediators of collagen damage in photoaging. METHODS We studied 59 whites (33 men and 26 women, ranging in age from 21 to 58 years) with light-to-moderate skin pigmentation, none of whom had current or prior skin disease. Only some of the participants were included in each of the studies. We irradiated their buttock skin with fluorescent ultraviolet lights under standard conditions and obtained skin samples from irradiated and nonirradiated areas by keratome or punch biopsy. In some studies, tretinoin and its vehicle were applied to skin under occlusion 48 hours before ultraviolet irradiation. The expression of matrix metalloproteinases was determined by in situ hybridization, immunohistology, and in situ zymography. Irradiation-induced degradation of skin collagen was measured by radioimmunoassay of soluble cross-linked telopeptides. The protein level of tissue inhibitor of matrix metalloproteinases type 1 was determined by Western blot analysis. RESULTS A single exposure to ultraviolet irradiation increased the expression of three matrix metalloproteinases -- collagenase, a 92-kd gelatinase, and stromelysin -- in skin connective tissue and outer skin layers, as compared with nonirradiated skin. The degradation of endogenous type I collagen fibrils was increased by 58 percent in irradiated skin, as compared with nonirradiated skin. Collagenase and gelatinase activity remained maximally elevated (4.4 and 2.3 times, respectively) for seven days with four exposures to ultraviolet irradiation, delivered at two-day intervals, as compared with base-line levels. Pretreatment of skin with tretinoin (all-trans-retinoic acid) inhibited the induction of matrix metalloproteinase proteins and activity (by 70 to 80 percent) in both connective tissue and outer layers of irradiated skin. Ultraviolet irradiation also induced tissue inhibitor of matrix metalloproteinases-1, which regulates the enzyme. Induction of the inhibitor was not affected by tretinoin. CONCLUSIONS Multiple exposures to ultraviolet irradiation lead to sustained elevations of matrix metalloproteinases that degrade skin collagen and may contribute to photoaging. Treatment with topical tretinoin inhibits irradiation-induced matrix metalloproteinases but not their endogenous inhibitor.
Ageing Research Reviews | 2002
Laure Rittié; Gary J. Fisher
UV irradiation acts as a broad activator of cell surface growth factor and cytokine receptors. This ligand-independent receptor activation induces multiple downstream signaling pathways that regulate expression of multiple genes. These signaling pathways converge to stimulate transcription factor AP-1. Among genes whose expression is regulated by AP-1 are several matrix-metalloproteinase (MMP) family members and type I procollagen. UV-enhanced matrix degradation is accompanied with decreased collagen production mediated not only by activation of AP-1, but also by inhibition of transforming growth factor (TGF)-beta signaling. Several alterations to skin connective tissue that occur during aging are mediated by mechanisms that are similar to those that occur in response to UV irradiation. Thus, skin aging is associated with increased AP-1 activity, increased MMP expression, impaired TGF-beta signaling, enhanced collagen degradation, and decreased collagen synthesis. Knowledge gained from examining molecular responses of human skin to UV irradiation provides not only a framework for understanding mechanisms involved in skin aging, but also may help in development of new clinical strategies to impede chronological and UV-induced skin aging.
The FASEB Journal | 1996
Gary J. Fisher; John J. Voorhees
For more than 40 years, it has been appreciated that vitamin A is a critical regulator of growth and differentiation of developing and adult mammalian and avian skin. Vitamin A deficiency and hypervitaminosis A cause disruption of normal cellular homeostatic mechanisms, resulting in impairment of skin barrier function. More recent studies demonstrating all‐trans retinoic acid as the major biologically active form of vitamin A, and nuclear retinoid receptors as the major mediators of all‐trans retinoic acid actions, have provided exciting new insights into the molecular basis of vitamin A actions. These recent insights have been the driving force for important advances in the many areas of retinoid research made during the past 6 years. Nowhere has this new knowledge been more extensively applied than toward understanding the molecular basis of retinoid physiology and pharmacology in skin. This article will review these recent findings and attempt to synthesize their meaning to provide a view into the mechanisms whereby retinoids participate in regulation of skin function.—Fisher, G. J., Voorhees, J. J. Molecular mechanisms of retinoid actions in skin. FASEBJ. 10,1002‐1013 (1996)
Journal of Clinical Investigation | 1998
Gary J. Fisher; Harvinder S. Talwar; Jiayuh Lin; Pinpin Lin; Fiona McPhillips; Zeng Quan Wang; Xiao Yan Li; Yinsheng Wan; Sewon Kang; John J. Voorhees
Human skin is exposed daily to solar ultraviolet (UV) radiation. UV induces the matrix metalloproteinases collagenase, 92-kD gelatinase, and stromelysin, which degrade skin connective tissue and may contribute to premature skin aging (photoaging). Pretreatment of skin with all-trans retinoic acid (tRA) inhibits UV induction of matrix metalloproteinases. We investigated upstream signal transduction pathways and the mechanism of tRA inhibition of UV induction of matrix metalloproteinases in human skin in vivo. Exposure of human skin in vivo to low doses of UV activated EGF receptors, the GTP-binding regulatory protein p21Ras, and stimulated mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38. Both JNK and p38 phosphorylated, and thereby activated transcription factors c-Jun and activating transcription factor 2 (ATF-2), which bound to the c-Jun promoter and upregulated c-Jun gene expression. Elevated c-Jun, in association with constitutively expressed c-Fos, formed increased levels of transcription factor activator protein (AP) 1, which is required for transcription of matrix metalloproteinases. Pretreatment of human skin with tRA inhibited UV induction of c-Jun protein and, consequently, AP-1. c-Jun protein inhibition occurred via a posttranscriptional mechanism, since tRA did not inhibit UV induction of c-Jun mRNA. These data demonstrate, for the first time, activation of MAP kinase pathways in humans in vivo, and reveal a novel posttranscriptional mechanism by which tRA antagonizes UV activation of AP-1 by inhibiting c-Jun protein induction. Inhibition of c-Jun induction likely contributes to the previously reported prevention by tRA of UV induction of AP-1-regulated matrix-degrading metalloproteinases in human skin.
The journal of investigative dermatology. Symposium proceedings / the Society for Investigative Dermatology, Inc. [and] European Society for Dermatological Research | 2009
Taihao Quan; Zhaoping Qin; Wei Xia; Yuan Shao; John J. Voorhees; Gary J. Fisher
UV radiation from the sun impacts skin health adversely through complex, multiple molecular pathways. Premature skin aging (photoaging) is among the most widely appreciated harmful effects of chronic exposure to solar UV radiation. Extensive damage to the dermal connective tissue is a hallmark of photoaged skin. Disruption of the normal architecture of skin connective tissue impairs skin function and causes it to look aged. UV irradiation induces expression of certain members of the matrix metalloproteinase (MMP) family, which degrade collagen and other extracellular matrix proteins that comprise the dermal connective tissue. Although the critical role of MMPs in photoaging is undeniable, important questions remain. This article summarizes our current understanding of the role of MMPs in the photoaging process and presents new data that (1) describe the expression and regulation by UV irradiation of all members of the MMP family in human skin in vivo and (2) quantify the relative contributions of epidermis and dermis to the expression of UV irradiation-induced MMPs in human skin in vivo.Journal of Investigative Dermatology Symposium Proceedings (2009) 14, 20-24; doi:10.1038/jidsymp.2009.8.
Archives of Dermatology | 2008
Gary J. Fisher; James Varani; John J. Voorhees
Skin appearance is a primary indicator of age. During the last decade, substantial progress has been made toward understanding underlying mechanisms of human skin aging. This understanding provides the basis for current use and new development of antiaging treatments. Our objective is to review present state-of-the-art knowledge pertaining to mechanisms involved in skin aging, with specific focus on the dermal collagen matrix. A major feature of aged skin is fragmentation of the dermal collagen matrix. Fragmentation results from actions of specific enzymes (matrix metalloproteinases) and impairs the structural integrity of the dermis. Fibroblasts that produce and organize the collagen matrix cannot attach to fragmented collagen. Loss of attachment prevents fibroblasts from receiving mechanical information from their support, and they collapse. Stretch is critical for normal balanced production of collagen and collagen-degrading enzymes. In aged skin, collapsed fibroblasts produce low levels of collagen and high levels of collagen-degrading enzymes. This imbalance advances the aging process in a self-perpetuating, never-ending deleterious cycle. Clinically proven antiaging treatments such as topical retinoic acid, carbon dioxide laser resurfacing, and intradermal injection of cross-linked hyaluronic acid stimulate production of new, undamaged collagen. Attachment of fibroblasts to this new collagen allows stretch, which in turn balances collagen production and degradation and thereby slows the aging process. Collagen fragmentation is responsible for loss of structural integrity and impairment of fibroblast function in aged human skin. Treatments that stimulate production of new, nonfragmented collagen should provide substantial improvement to the appearance and health of aged skin.
Journal of Clinical Investigation | 2000
Gary J. Fisher; Subhash C. Datta; Zeng Quan Wang; Xiao Yan Li; Taihao Quan; Jin Ho Chung; Sewon Kang; John J. Voorhees
The aged appearance of skin following repeated exposure to solar ultraviolet (UV) irradiation stems largely from damage to cutaneous connective tissue, which is composed primarily of type I and type III collagens. We report here that a single exposure to UV irradiation causes significant loss of procollagen synthesis in human skin. Expression of type I and type III procollagens is substantially reduced within 24 hours after a single UV exposure, even at UV doses that cause only minimal skin reddening. Daily UV exposures over 4 days result in sustained reductions of both type I and type III procollagen protein levels for at least 24 hours after the final UV exposure. UV inhibition of type I procollagen synthesis is mediated in part by c-Jun, which is induced by UV irradiation and interferes with procollagen transcription. Pretreatment of human skin in vivo with all-trans retinoic acid inhibits UV induction of c-Jun and protects skin against loss of procollagen synthesis. We have reported previously that UV irradiation induces matrix-degrading metalloproteinases in human skin and that pretreatment of skin with all-trans retinoic acid inhibits this induction. UV irradiation, therefore, damages human skin connective tissue by simultaneously inhibiting procollagen synthesis and stimulating collagen breakdown. All-trans retinoic acid protects against both of these deleterious effects and may thereby retard premature skin aging.
American Journal of Pathology | 2004
Taihao Quan; Tianyuan He; Sewon Kang; John J. Voorhees; Gary J. Fisher
Ultraviolet (UV) irradiation from the sun reduces production of type I procollagen (COLI), the major structural protein in human skin. This reduction is a key feature of the pathophysiology of premature skin aging (photoaging). Photoaging is the most common form of skin damage and is associated with skin carcinoma. TGF-beta/Smad pathway is the major regulator of type I procollagen synthesis in human skin. We have previously reported that UV irradiation impairs transforming growth factor-beta (TGF-beta)/Smad signaling in mink lung epithelial cells. We have investigated the mechanism of UV irradiation impairment of the TGF-beta/Smad pathway and the impact of this impairment on type I procollagen production in human skin fibroblasts, the major collagen-producing cells in skin. We report here that UV irradiation impairs TGF-beta/Smad pathway in human skin by down-regulation of TGF-beta type II receptor (TbetaRII). This loss of TbetaRII occurs within 8 hours after UV irradiation and precedes down-regulation of type I procollagen expression in human skin in vivo. In human skin fibroblasts, UV-induced TbetaRII down-regulation is mediated by transcriptional repression and results in 90% reduction of specific, cell-surface binding of TGF-beta. This loss of TbetaRII prevents downstream activation of Smad2/3 by TGF-beta, thereby reducing expression of type I procollagen. Preventing loss of TbetaRII by overexpression protects against UV inhibition of type I procollagen gene expression in human skin fibroblasts. UV-induced down-regulation of TbetaRII, with attendant reduction of type I procollagen production, is a critical molecular mechanism in the pathophysiology of photoaging.
American Journal of Pathology | 2001
James Varani; Dara Spearman; Patricia Perone; Suzanne E.G. Fligiel; Subhash C. Datta; Zeng Quan Wang; Yuan Shao; Sewon Kang; Gary J. Fisher; John J. Voorhees
Type I and type III procollagen are reduced in photodamaged human skin. This reduction could result from increased degradation by metalloproteinases and/or from reduced procollagen synthesis. In the present study, we investigated type I procollagen production in photodamaged and sun-protected human skin. Skin samples from severely sun-damaged forearm skin and matched sun-protected hip skin from the same individuals were assessed for type I procollagen gene expression by in situ hybridization and for type I procollagen protein by immunostaining. Both mRNA and protein were reduced ( approximately 65 and 57%, respectively) in photodamaged forearm skin compared to sun-protected hip skin. We next investigated whether reduced type I procollagen production was because of inherently reduced capacity of skin fibroblasts in severely photodamaged forearm skin to synthesize procollagen, or whether contextual influences within photodamaged skin act to down-regulate type I procollagen synthesis. For these studies, fibroblasts from photodamaged skin and matched sun-protected skin were established in culture. Equivalent numbers of fibroblasts were isolated from the two skin sites. Fibroblasts from the two sites had similar growth capacities and produced virtually identical amounts of type I procollagen protein. These findings indicate that the lack of type I procollagen synthesis in sun-damaged skin is not because of irreversible damage to fibroblast collagen-synthetic capacity. It follows, therefore, that factors within the severely photodamaged skin may act in some manner to inhibit procollagen production by cells that are inherently capable of doing so. Interactions between fibroblasts and the collagenous extracellular matrix regulate type I procollagen synthesis. In sun-protected skin, collagen fibrils exist as a highly organized matrix. Fibroblasts are found within the matrix, in close apposition with collagen fibers. In photodamaged skin, collagen fibrils are shortened, thinned, and disorganized. The level of partially degraded collagen is approximately 3.6-fold greater in photodamaged skin than in sun-protected skin, and some fibroblasts are surrounded by debris. To model this situation, skin fibroblasts were cultured in vitro on intact collagen or on collagen that had been partially degraded by exposure to collagenolytic enzymes. Collagen that had been partially degraded by exposure to collagenolytic enzymes from either bacteria or human skin underwent contraction in the presence of dermal fibroblasts, whereas intact collagen did not. Fibroblasts cultured on collagen that had been exposed to either source of collagenolytic enzyme demonstrated reduced proliferative capacity (22 and 17% reduction on collagen degraded by bacterial collagenase or human skin collagenase, respectively) and synthesized less type I procollagen (36 and 88% reduction, respectively, on a per cell basis). Taken together, these findings indicate that 1) fibroblasts from photoaged and sun-protected skin are similar in their capacities for growth and type I procollagen production; and 2) the accumulation of partially degraded collagen observed in photodamaged skin may inhibit, by an as yet unidentified mechanism, type I procollagen synthesis.
American Journal of Pathology | 2009
Gary J. Fisher; Taihao Quan; Trupta Purohit; Yuan Shao; Moon Kyun Cho; Tianyuan He; James Varani; Sewon Kang; John J. Voorhees
Aged human skin is fragile because of fragmentation and loss of type I collagen fibrils, which confer strength and resiliency. We report here that dermal fibroblasts express increased levels of collagen-degrading matrix metalloproteinases-1 (MMP-1) in aged (>80 years old) compared with young (21 to 30 years old) human skin in vivo. Transcription factor AP-1 and alpha2beta1 integrin, which are key regulators of MMP-1 expression, are also elevated in fibroblasts in aged human skin in vivo. MMP-1 treatment of young skin in organ culture causes fragmentation of collagen fibrils and reduces fibroblast stretch, consistent with reduced mechanical tension, as observed in aged human skin. Limited fragmentation of three-dimensional collagen lattices with exogenous MMP-1 also reduces fibroblast stretch and mechanical tension. Furthermore, fibroblasts cultured in fragmented collagen lattices express elevated levels of MMP-1, AP-1, and alpha2beta1 integrin. Importantly, culture in fragmented collagen raises intracellular oxidant levels and treatment with antioxidant MitoQ(10) significantly reduces MMP-1 expression. These data identify positive feedback regulation that couples age-dependent MMP-1-catalyzed collagen fragmentation and oxidative stress. We propose that this self perpetuating cycle promotes human skin aging. These data extend the current understanding of the oxidative theory of aging beyond a cellular-centric view to include extracellular matrix and the critical role that connective tissue microenvironment plays in the biology of aging.