Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary J. Pielak is active.

Publication


Featured researches published by Gary J. Pielak.


Proceedings of the National Academy of Sciences of the United States of America | 2002

FlgM gains structure in living cells

Matthew M. Dedmon; Chetan N. Patel; Gregory B. Young; Gary J. Pielak

Intrinsically disordered proteins such as FlgM play important roles in biology, but little is known about their structure in cells. We use NMR to show that FlgM gains structure inside living Escherichia coli cells and under physiologically relevant conditions in vitro, i.e., in solutions containing high concentrations (≥400 g/liter) of glucose, BSA, or ovalbumin. Structure formation represents solute-induced changes in the equilibrium between the structured and disordered forms of FlgM. The results provide insight into how the environment of intrinsically disordered proteins could dictate their structure and, in turn, emphasize the relevance of studying proteins in living cells and in vitro under physiologically realistic conditions.


Journal of the American Chemical Society | 2012

Macromolecular Crowding and Protein Stability

Yaqiang Wang; Mohona Sarkar; Austin E. Smith; Alexander S. Krois; Gary J. Pielak

An understanding of cellular chemistry requires knowledge of how crowded environments affect proteins. The influence of crowding on protein stability arises from two phenomena, hard-core repulsions and soft (i.e., chemical) interactions. Most efforts to understand crowding effects on protein stability, however, focus on hard-core repulsions, which are inherently entropic and stabilizing. We assessed these phenomena by measuring the temperature dependence of NMR-detected amide proton exchange and used these data to extract the entropic and enthalpic contributions of crowding to the stability of ubiquitin. Contrary to expectations, the contribution of chemical interactions is large and in many cases dominates the contribution from hardcore repulsions. Our results show that both chemical interactions and hard-core repulsions must be considered when assessing the effects of crowding and help explain previous observations about protein stability and dynamics in cells.


Journal of the American Chemical Society | 2011

Protein Crowding Tunes Protein Stability

Andrew C. Miklos; Mohona Sarkar; Yaqiang Wang; Gary J. Pielak

Thirty percent of a cells volume is filled with macromolecules, and protein chemistry in a crowded environment is predicted to differ from that in dilute solution. We quantified the effect of crowding by globular proteins on the equilibrium thermodynamic stability of a small globular protein. Theory has long predicted that crowding should stabilize proteins, and experiments using synthetic polymers as crowders show such stabilizing effects. We find that protein crowders can be mildly destabilizing. The destabilization arises from a competition between stabilizing excluded-volume effects and destabilizing nonspecific interactions, including electrostatic interactions. This competition results in tunable stability, which could impact our understanding of the spatial and temporal roles of proteins in living systems.


Journal of the American Chemical Society | 2010

Effects of Proteins on Protein Diffusion

Yaqiang Wang; Conggang Li; Gary J. Pielak

Despite increased attention, little is known about how the crowded intracellular environment affects basic phenomena like protein diffusion. Here, we use NMR to quantify the rotational and translational diffusion of a 7.4-kDa test protein, chymotrypsin inhibitor 2 (CI2), in solutions of glycerol, synthetic polymers, proteins, and cell lysates. As expected, translational diffusion and rotational diffusion decrease with increasing viscosity. In glycerol, for example, the decrease follows the Stokes-Einstein and Stokes-Einstein-Debye laws. Synthetic polymers cause negative deviation from the Stokes laws and affect translation more than rotation. Surprisingly, however, protein crowders have the opposite effect, causing positive deviation and reducing rotational diffusion more than translational diffusion. Indeed, bulk proteins severely attenuate the rotational diffusion of CI2 in crowded protein solutions. Similarly, CI2 diffusion in cell lysates is comparable to its diffusion in crowded protein solutions, supporting the biological relevance of the results. The rotational attenuation is independent of the size and total charge of the crowding protein, suggesting that the effect is general. The difference between the behavior of synthetic polymers and protein crowders suggests that synthetic polymers may not be suitable mimics of the intracellular environment. NMR relaxation data reveal that the source of the difference between synthetic polymers and proteins is the presence of weak interactions between the proteins and CI2. In summary, weak but nonspecific, noncovalent chemical interactions between proteins appear to fundamentally impact protein diffusion in cells.


Chemical Reviews | 2014

Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs)

Francois Theillet; Andres Binolfi; Tamara Frembgen-Kesner; Karan S. Hingorani; Mohona Sarkar; Ciara Kyne; Conggang Li; Peter B. Crowley; Lila M. Gierasch; Gary J. Pielak; Adrian H. Elcock; Anne Gershenson; Philipp Selenko

It has long been axiomatic that a protein’s structure determines its function. Intrinsically disordered proteins (IDPs) and disordered protein regions (IDRs) defy this structure–function paradigm. They do not exhibit stable secondary and/or tertiary structures and exist as dynamic ensembles of interconverting conformers with preferred, nonrandom orientations.1−4 The concept of IDPs and IDRs as functional biological units was initially met with skepticism. For a long time, disorder, intuitively implying chaos, had no place in our perception of orchestrated molecular events controlling cell biology. Over the past years, however, this notion has changed. Aided by findings that structural disorder constitutes an ubiquitous and abundant biological phenomenon in organisms of all phyla,5−7 and that it is often synonymous with function,8−11 disorder has become an integral part of modern protein biochemistry. Disorder thrives in eukaryotic signaling pathways12 and functions as a prominent player in many regulatory processes.13−15 Disordered proteins and protein regions determine the underlying causes of many neurodegenerative disorders and constitute the main components of amyloid fibrils.16 They further contribute to many forms of cancer, diabetes and to cardiovascular and metabolic diseases.17,18 Research into disordered proteins produced significant findings and established important new concepts. On the structural side, novel experimental and computational approaches identified and described disordered protein ensembles3,19,20 and led to terms such as secondary structure propensities, residual structural features, and transient long-range contacts.1,21 The discovery of coupled folding-and-binding reactions defined the paradigm of disorder-to-order transitions22 and high-resolution insights into the architectures of amyloid fibrils were obtained.23,24 On the biological side, we learned about the unexpected intracellular stability of disordered proteins, their roles in integrating post-translational protein modifications in cell signaling and about their functions in regulatory processes ranging from transcription to cell fate decisions.15,25,26 One open question remaining to be addressed is how these in vitro structural insights relate to biological in vivo effects. How do complex intracellular environments modulate the in vivo properties of disordered proteins and what are the implications for their biological functions (Figure ​(Figure11)?27−29 Figure 1 Intracellular complexity. (A) Left: Cryo-electron tomography slice of a mammalian cell. Middle: Close-up view of cellular structures colored according to their identities: Right: Three-dimensional surface representation of the same region. Yellow, endoplasmic ...


Protein Science | 2008

Solvent‐induced collapse of α‐synuclein and acid‐denatured cytochrome c

Artemiza S. Morar; Alina Olteanu; Gregory B. Young; Gary J. Pielak

The effects of solution conditions on protein collapse were studied by measuring the hydrodynamic radii of two unfolded proteins, α‐synuclein and acid‐denatured ferricytochrome c, in dilute solution and in 1 M glucose. The radius of α‐synuclein in dilute solution is less than that predicted for a highly denatured state, and adding 1 M glucose causes further collapse. Circular dichroic data show that α‐synuclein lacks organized structure in both dilute solution and 1 M glucose. On the other hand, the radius of acid‐denatured cytochrome c in dilute solution is consistent with that of a highly denatured state, and 1 M glucose induces collapse to the size and structure of native cytochrome c. Taken together, these data show that α‐synuclein, a natively unfolded protein, is collapsed even in dilute solution, but lacks structure.


Journal of the American Chemical Society | 2010

Protein 19F NMR in Escherichia coli

Conggang Li; Gui Fang Wang; Yaqiang Wang; Rachel Creager-Allen; Evan A. Lutz; Heidi Scronce; Kristin M. Slade; Rebecca A. S. Ruf; Ryan A. Mehl; Gary J. Pielak

Although overexpression and (15)N enrichment facilitate the observation of resonances from disordered proteins in Escherichia coli, (15)N enrichment alone is insufficient for detecting most globular proteins. Here, we explain this dichotomy and overcome the problem while extending the capability of in-cell NMR by using (19)F-labeled proteins. Resonances from small (approximately 10 kDa) globular proteins containing the amino acid analogue 3-fluoro-tyrosine can be observed in cells, but for larger proteins the (19)F resonances are broadened beyond detection. Incorporating the amino acid analogue trifluoromethyl-L-phenylalanine allows larger proteins (up to 100 kDa) to be observed in cells. We also show that site-specific structural and dynamic information about both globular and disordered proteins can be obtained inside cells by using (19)F NMR.


Biopolymers | 2000

Osmolyte‐induced changes in protein conformational equilibria

Aleister J. Saunders; Paula R. Davis-Searles; Devon L. Allen; Gary J. Pielak; Dorothy A. Erie

Examining solute-induced changes in protein conformational equilibria is a long-standing method for probing the role of water in maintaining protein stability. Interpreting the molecular details governing the solute-induced effects, however, remains controversial. We present experimental and theoretical data for osmolyte-induced changes in the stabilities of the A and N states of yeast iso-1-ferricytochrome c. Using polyol osmolytes of increasing size, we observe that osmolytes alone induce A-state formation from acid-denatured cytochrome c and N state formation from the thermally denatured protein. The stabilities of the A and N states increase linearly with osmolyte concentration. Interestingly, osmolytes stabilize the A state to a greater degree than the N state. To interpret the data, we divide the free energy for the reaction into contributions from nonspecific steric repulsions (excluded volume effects) and from binding interactions. We use scaled particle theory (SPT) to estimate the free energy contributions from steric repulsions, and we estimate the contributions from water-protein and osmolyte-protein binding interactions by comparing the SPT calculations to experimental data. We conclude that excluded volume effects are the primary stabilizing force, with changes in water-protein and solute-protein binding interactions making favorable contributions to stability of the A state and unfavorable contributions to the stability of the N state. The validity of our interpretation is strengthened by analysis of data on osmolyte-induced protein stabilization from the literature, and by comparison with other analyses of solute-induced changes in conformational equilibria.


Biochemistry | 2012

Unexpected Effects of Macromolecular Crowding on Protein Stability

Laura A. Benton; Austin E. Smith; Gregory B. Young; Gary J. Pielak

Most theories about macromolecular crowding focus on two ideas: the macromolecular nature of the crowder and entropy. For proteins, the volume excluded by the crowder favors compact native states over expanded denatured states, enhancing protein stability by decreasing the entropy of unfolding. We tested these ideas with the widely used crowding agent Ficoll-70 and its monomer, sucrose. Contrary to expectations, Ficoll and sucrose have approximately the same stabilizing effect on chymotrypsin inhibitor 2. Furthermore, the stabilization is driven by enthalpy, not entropy. These results point to the need for carefully controlled studies and more sophisticated theories for understanding crowding effects.


Journal of the American Chemical Society | 2011

Macromolecular Crowding Fails To Fold a Globular Protein in Cells

Alexander P. Schlesinger; Yaqiang Wang; Xavier Tadeo; Oscar Millet; Gary J. Pielak

Proteins perform their functions in cells where macromolecular solutes reach concentrations of >300 g/L and occupy >30% of the volume. The volume excluded by these macromolecules stabilizes globular proteins because the native state occupies less space than the denatured state. Theory predicts that crowding can increase the ratio of folded to unfolded protein by a factor of 100, amounting to 3 kcal/mol of stabilization at room temperature. We tested the idea that volume exclusion dominates the crowding effect in cells using a variant of protein L, a 7 kDa globular protein with seven lysine residues replaced by glutamic acids; 84% of the variant molecules populate the denatured state in dilute buffer at room temperature, compared with 0.1% for the wild-type protein. We then used in-cell NMR spectroscopy to show that the cytoplasm of Escherichia coli does not overcome even this modest (∼1 kcal/mol) free-energy deficit. The data are consistent with the idea that nonspecific interactions between cytoplasmic components can overcome the excluded-volume effect. Evidence for these interactions is provided by the observations that adding simple salts folds the variant in dilute solution but increasing the salt concentration inside E. coli does not fold the protein. Our data are consistent with the results of other studies of protein stability in cells and suggest that stabilizing excluded-volume effects, which must be present under crowded conditions, can be ameliorated by nonspecific interactions between cytoplasmic components.

Collaboration


Dive into the Gary J. Pielak's collaboration.

Top Co-Authors

Avatar

Conggang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gregory B. Young

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Austin E. Smith

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Yaqiang Wang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Mohona Sarkar

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Douglas S. Auld

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Samantha Piszkiewicz

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Thomas C. Boothby

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrew C. Miklos

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge