Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary Kohanbash is active.

Publication


Featured researches published by Gary Kohanbash.


Journal of Clinical Oncology | 2011

Induction of CD8+ T-Cell Responses Against Novel Glioma–Associated Antigen Peptides and Clinical Activity by Vaccinations With α-Type 1 Polarized Dendritic Cells and Polyinosinic-Polycytidylic Acid Stabilized by Lysine and Carboxymethylcellulose in Patients With Recurrent Malignant Glioma

Hideho Okada; Pawel Kalinski; Ryo Ueda; Aki Hoji; Gary Kohanbash; Teresa E. Donegan; Arlan Mintz; Johnathan A. Engh; David L. Bartlett; Charles K. Brown; Herbert J. Zeh; Matthew P. Holtzman; Todd A. Reinhart; Theresa L. Whiteside; Lisa H. Butterfield; Ronald L. Hamilton; Douglas M. Potter; Ian F. Pollack; Andres M. Salazar; Frank S. Lieberman

PURPOSE A phase I/II trial was performed to evaluate the safety and immunogenicity of a novel vaccination with α-type 1 polarized dendritic cells (αDC1) loaded with synthetic peptides for glioma-associated antigen (GAA) epitopes and administration of polyinosinic-polycytidylic acid [poly(I:C)] stabilized by lysine and carboxymethylcellulose (poly-ICLC) in HLA-A2(+) patients with recurrent malignant gliomas. GAAs for these peptides are EphA2, interleukin (IL)-13 receptor-α2, YKL-40, and gp100. PATIENTS AND METHODS Twenty-two patients (13 with glioblastoma multiforme [GBM], five with anaplastic astrocytoma [AA], three with anaplastic oligodendroglioma [AO], and one with anaplastic oligoastrocytoma [AOA]) received at least one vaccination, and 19 patients received at least four vaccinations at two αDC1 dose levels (1 × or 3 × 10(7)/dose) at 2-week intervals intranodally. Patients also received twice weekly intramuscular injections of 20 μg/kg poly-ICLC. Patients who demonstrated positive radiologic response or stable disease without major adverse events were allowed to receive booster vaccines. T-lymphocyte responses against GAA epitopes were assessed by enzyme-linked immunosorbent spot and HLA-tetramer assays. RESULTS The regimen was well-tolerated. The first four vaccines induced positive immune responses against at least one of the vaccination-targeted GAAs in peripheral blood mononuclear cells in 58% of patients. Peripheral blood samples demonstrated significant upregulation of type 1 cytokines and chemokines, including interferon-α and CXCL10. Nine (four GBM, two AA, two AO, and one AOA) achieved progression-free status lasting at least 12 months. One patient with recurrent GBM demonstrated sustained complete response. IL-12 production levels by αDC1 positively correlated with time to progression. CONCLUSION These data support safety, immunogenicity, and preliminary clinical activity of poly-ICLC-boosted αDC1-based vaccines.


Cancer Research | 2011

COX-2 Blockade Suppresses Gliomagenesis by Inhibiting Myeloid-Derived Suppressor Cells

Mitsugu Fujita; Gary Kohanbash; Wendy Fellows-Mayle; Ronald L. Hamilton; Yoshihiro Komohara; Stacy A. Decker; John R. Ohlfest; Hideho Okada

Epidemiologic studies have highlighted associations between the regular use of nonsteroidal anti-inflammatory drugs (NSAID) and reduced glioma risks in humans. Most NSAIDs function as COX-2 inhibitors that prevent production of prostaglandin E₂ (PGE₂). Because PGE₂ induces expansion of myeloid-derived suppressor cells (MDSC), we hypothesized that COX-2 blockade would suppress gliomagenesis by inhibiting MDSC development and accumulation in the tumor microenvironment (TME). In mouse models of glioma, treatment with the COX-2 inhibitors acetylsalicylic acid (ASA) or celecoxib inhibited systemic PGE₂ production and delayed glioma development. ASA treatment also reduced the MDSC-attracting chemokine CCL2 (C-C motif ligand 2) in the TME along with numbers of CD11b(+)Ly6G(hi)Ly6C(lo) granulocytic MDSCs in both the bone marrow and the TME. In support of this evidence that COX-2 blockade blocked systemic development of MDSCs and their CCL2-mediated accumulation in the TME, there were defects in these processes in glioma-bearing Cox2-deficient and Ccl2-deficient mice. Conversely, these mice or ASA-treated wild-type mice displayed enhanced expression of CXCL10 (C-X-C motif chemokine 10) and infiltration of cytotoxic T lymphocytes (CTL) in the TME, consistent with a relief of MDSC-mediated immunosuppression. Antibody-mediated depletion of MDSCs delayed glioma growth in association with an increase in CXCL10 and CTLs in the TME, underscoring a critical role for MDSCs in glioma development. Finally, Cxcl10-deficient mice exhibited reduced CTL infiltration of tumors, establishing that CXCL10 limited this pathway of immunosuppression. Taken together, our findings show that the COX-2 pathway promotes gliomagenesis by directly supporting systemic development of MDSCs and their accumulation in the TME, where they limit CTL infiltration.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1

Ryo Ueda; Gary Kohanbash; Kotaro Sasaki; Mitsugu Fujita; Xinmei Zhu; Edward R. Kastenhuber; Heather A. McDonald; Douglas M. Potter; Ronald L. Hamilton; Michael T. Lotze; Saleem A. Khan; Robert W. Sobol; Hideho Okada

The RNase III endonuclease Dicer plays a key role in generation of microRNAs (miRs). We hypothesized that Dicer regulates cancer cell susceptibility to immune surveillance through miR processing. Indeed, Dicer disruption up-regulated intercellular cell adhesion molecule (ICAM)-1 and enhanced the susceptibility of tumor cells to antigen-specific lysis by cytotoxic T-lymphocytes (CTLs), while expression of other immunoregulatory proteins examined was not affected. Blockade of ICAM-1 inhibited the specific lysis of CTLs against Dicer-disrupted cells, indicating a pivotal role of ICAM-1 in the interaction between tumor cells and CTL. Both miR-222 and -339 are down-regulated in Dicer-disrupted cells and directly interacted with the 3′ untranslated region (UTR) of ICAM-1 mRNA. Modulation of Dicer or these miRs inversely correlated with ICAM-1 protein expression and susceptibility of U87 glioma cells to CTL-mediated cytolysis while ICAM-1 mRNA levels remained stable. Immunohistochemical and in situ hybridization analyses of 30 primary glioblastoma tissues demonstrated that expression of Dicer, miR-222, or miR-339 was inversely associated with ICAM-1 expression. Taken together, Dicer is responsible for the generation of the mature miR-222 and -339, which suppress ICAM-1 expression on tumor cells, thereby down-regulating the susceptibility of tumor cells to CTL-mediated cytolysis. This study suggests development of novel miR-targeted therapy to promote cytolysis of tumor cells.


Clinical Cancer Research | 2009

Systemic Inhibition of Transforming Growth Factor-β in Glioma-Bearing Mice Improves the Therapeutic Efficacy of Glioma-Associated Antigen Peptide Vaccines

Ryo Ueda; Mitsugu Fujita; Xinmei Zhu; Kotaro Sasaki; Edward R. Kastenhuber; Gary Kohanbash; Heather A. McDonald; Jay Harper; Scott Lonning; Hideho Okada

Purpose: A variety of cancers, including malignant gliomas, overexpress transforming growth factor-β (TGF-β), which helps tumors evade effective immune surveillance through a variety of mechanisms, including inhibition of CD8+ CTLs and enhancing the generation of regulatory T (Treg) cells. We hypothesized that inhibition of TGF-β would improve the efficacy of vaccines targeting glioma-associated antigen (GAA)–derived CTL epitopes by reversal of immunosuppression. Experimental Design: Mice bearing orthotopic GL261 gliomas were treated systemically with a TGF-β–neutralizing monoclonal antibody, 1D11, with or without s.c. vaccinations of synthetic peptides for GAA-derived CTL epitopes, GARC-1 (77-85) and EphA2 (671-679), emulsified in incomplete Freunds adjuvant. Results: Mice receiving the combination regimen exhibited significantly prolonged survival compared with mice receiving either 1D11 alone, GAA vaccines alone, or mock treatments alone. TGF-β neutralization enhanced the systemic induction of antigen-specific CTLs in glioma-bearing mice. Flow cytometric analyses of brain-infiltrating lymphocytes revealed that 1D11 treatment suppressed phosphorylation of Smad2, increased GAA-reactive/IFN-γ–producing CD8+ T cells, and reduced CD4+/FoxP3+ Treg cells in the glioma microenvironment. Neutralization of TGF-β also upregulated plasma levels of interleukin-12, macrophage inflammatory protein-1α, and IFN-inducible protein-10, suggesting a systemic promotion of type-1 cytokine/chemokine production. Furthermore, 1D11 treatment upregulated plasma interleukin-15 levels and promoted the persistence of GAA-reactive CD8+ T cells in glioma-bearing mice. Conclusions: These data suggest that systemic inhibition of TGF-β by 1D11 can reverse the suppressive immunologic environment of orthotopic tumor-bearing mice both systemically and locally, thereby enhancing the therapeutic efficacy of GAA vaccines. (Clin Cancer Res 2009;15(21):6551–9)


Cancer Research | 2013

GM-CSF Promotes the Immunosuppressive Activity of Glioma-Infiltrating Myeloid Cells through Interleukin-4 Receptor-α

Gary Kohanbash; Kayla McKaveney; Masashi Sakaki; Ryo Ueda; Arlan Mintz; Nduka Amankulor; Mitsugu Fujita; John R. Ohlfest; Hideho Okada

Malignant gliomas are lethal cancers in the brain and heavily infiltrated by myeloid cells. Interleukin-4 receptor-α (IL-4Rα) mediates the immunosuppressive functions of myeloid cells, and polymorphisms in the IL-4Rα gene are associated with altered glioma risk and prognosis. In this study, we sought to evaluate a hypothesized causal role for IL-4Rα and myeloid suppressor cells in glioma development. In both mouse de novo gliomas and human glioblastoma cases, IL-4Rα was upregulated on glioma-infiltrating myeloid cells but not in the periphery or in normal brain. Mice genetically deficient for IL-4Rα exhibited a slower growth of glioma associated with reduced production in the glioma microenvironment of arginase, a marker of myeloid suppressor cells, which is critical for their T-cell inhibitory function. Supporting this result, investigations using bone marrow-derived myeloid cells showed that IL-4Rα mediates IL-13-induced production of arginase. Furthermore, glioma-derived myeloid cells suppressed T-cell proliferation in an IL-4Rα-dependent manner, consistent with their identification as myeloid-derived suppressor cells (MDSC). Granulocyte macrophage colony-stimulating factor (GM-CSF) plays a central role for the induction of IL-4Rα expression on myeloid cells, and we found that GM-CSF is upregulated in both human and mouse glioma microenvironments compared with normal brain or peripheral blood samples. Together, our findings establish a GM-CSF-induced mechanism of immunosuppression in the glioma microenvironment via upregulation of IL-4Rα on MDSCs.


Cancer Research | 2009

Effective Immunotherapy against Murine Gliomas Using Type 1 Polarizing Dendritic Cells―Significant Roles of CXCL10

Mitsugu Fujita; Xinmei Zhu; Ryo Ueda; Kotaro Sasaki; Gary Kohanbash; Edward R. Kastenhuber; Heather A. McDonald; Gregory A. Gibson; Simon C. Watkins; Ravikumar Muthuswamy; Pawel Kalinski; Hideho Okada

In an attempt to develop effective vaccines against central nervous system (CNS) tumors, we evaluated the ability of vaccines with standard dendritic cells (DC) versus type 1 polarizing DCs (DC1) to induce glioma-specific type 1 CTLs with CNS tumor-relevant homing properties and the mechanism of their action. C57BL/6 mouse-derived bone marrow cells were cultured with mouse granulocyte/macrophage colony-stimulating factor (GM-CSF) for 6 days, and CD11c(+) cells were subsequently cultured with GM-CSF, rmIFN-gamma, rmIFN-alpha, rmIL-4, and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose for 24 hours to generate DC1s. In analogy to their human counterparts, mouse DC1s exhibited surface marker profiles of mature DCs and produced high levels of IL-12 and CXCL10. Importantly for their application as cancer vaccines, such DC1s stably retained their type 1 phenotype even when exposed to type 2-promoting or regulatory T cell (Treg)-promoting environments. Consistently, mouse DC1s induced antigen-specific type 1 CTLs more efficiently than nonpolarized DCs in vitro. DC1s given s.c. migrated into draining lymph nodes, induced antigen-specific CTLs, and suppressed Treg accumulation. In addition, s.c. immunization with DC1s loaded with glioma-associated antigen (GAA)-derived CTL epitope peptides prolonged the survival of CNS GL261 glioma-bearing mice, which was associated with efficient CNS glioma homing of antigen-specific CTLs. Intratumoral injections of GAA peptide-loaded DC1s further enhanced the anti-CNS glioma effects of DC1-based s.c. immunization. Interestingly, the antitumor functions were abrogated with CXCL10(-/-) mouse-derived DC1s. Collectively, these findings show the anti-CNS glioma effects of DC1-based therapy and a novel role of CXCL10 in the immunologic and therapeutic activity of DC-based cancer vaccines.


Seminars in Cancer Biology | 2012

MicroRNAs and STAT Interplay

Gary Kohanbash; Hideho Okada

MicroRNA (miR) are emerging as important gene expression regulators often involved in a variety of pathogenesis such as cancers and autoimmunity. Signal transducers and activators of transcription (STAT) proteins are the principle signaling proteins for many cytokines and growth factors, thereby play a critical role in regulating immune cell homeostasis, differentiation and cellular functions. In this review, we discuss recent advances in the field demonstrating active interactions between STATs and miRs, with our primary focus on the promotion and inhibition of immune cells and cancer. Additionally, we review the reciprocal regulations between STATs and miR, and discuss how we can use this knowledge in the context of diseases. For example, recent findings related to STAT1 and miR-155 support the presence of a positive feedback loop of miR-155 and STAT1 in response to inflammatory signals or infection. STAT3 is known to play critical roles in tumorigenesis and cancer-induced immunosuppression. There is a growing body of evidence demonstrating that STAT3 directly activates miR-21, one of miRs that promote cancer cell survival and proliferation. While some miRs directly regulate STATs, there are findings demonstrating indirect STAT regulation by miRs also mediate important biological mechanisms. Therefore, further research is warranted to elucidate significant contributions made by direct and indirect miR-STAT mechanisms. As we learn more about miR pathways, we gain the opportunity to manipulate them in cancer cells to slow down growth or increase their susceptibility anti-tumor immunity.


The International Journal of Biochemistry & Cell Biology | 2010

MicroRNAs in immune regulation: Opportunities for cancer immunotherapy

Hideho Okada; Gary Kohanbash; Michael T. Lotze

Endogenously produced microRNAs are predicted to regulate the translation of over two-thirds all human gene transcripts. Certain microRNAs regulate expression of genes that are critically involved in both innate and adaptive immune responses. Immune cells represent a highly attractive target for microRNA gene therapy approaches, as these cells can be isolated, treated and then reintroduced into the patient. In this short review, we discuss how recent discoveries on the roles of microRNAs in immune-regulation will advance the field of cancer immunology and immunotherapy. Targets identified already in T cells include microRNAs, miR-17-92 family, miR-155, and miR-181a. In macrophages, miR-125b, miR-146, and miR-155 act as Pathogen Associated Molecular Pattern Molecule-associated microRNAs and miR-34C and miR-214 as Damage Associated Molecular Pattern Molecules-associated miRs. We have also demonstrated that the ability of tumors to serve as targets for cytolytic effectors is regulated by miR-222 and miR-339.


Journal of Neuro-oncology | 2008

Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas

Hideho Okada; Keri L. Low; Gary Kohanbash; Heather A. McDonald; Ronald L. Hamilton; Ian F. Pollack

We investigated the protein expression of three glioma-associated antigens (GAAs) in pediatric brain stem glioma (BSG) and non-brain stem glioma (NBSG) cases with a view to their possible use in immunotherapy. Expression of EphA2, IL-13Rα2 and Survivin were studied by immunohistochemistry on paraffin-embedded tissues using a series of 15 BSG cases and 12 NBSG cases. Thirteen of 15 BSGs and all 12 NBSGs expressed at least one of GAAs; and 7 BSGs and 9 NBSGs expressed at least two of these GAAs at higher levels than non-neoplastic brain. There was no association between the tumor grade and levels of GAA expression. Although many cases demonstrated diffuse expression of GAAs throughout specimens, partial or patchy expression was noted in a small number of cases, suggesting a need for targeting multiple GAAs in immunotherapy. These results suggest that EphA2, IL-13Ralpha2 and Survivin are suitable targets for developing vaccine strategies for pediatric glioma.


Journal of Translational Medicine | 2010

miR-17-92 expression in differentiated T cells - implications for cancer immunotherapy

Kotaro Sasaki; Gary Kohanbash; Aki Hoji; Ryo Ueda; Heather A. McDonald; Todd A. Reinhart; Jeremy J. Martinson; Michael T. Lotze; Francesco M. Marincola; Ena Wang; Mitsugu Fujita; Hideho Okada

BackgroundType-1 T cells are critical for effective anti-tumor immune responses. The recently discovered microRNAs (miRs) are a large family of small regulatory RNAs that control diverse aspects of cell function, including immune regulation. We identified miRs differentially regulated between type-1 and type-2 T cells, and determined how the expression of such miRs is regulated.MethodsWe performed miR microarray analyses on in vitro differentiated murine T helper type-1 (Th1) and T helper type-2 (Th2) cells to identify differentially expressed miRs. We used quantitative RT-PCR to confirm the differential expression levels. We also used WST-1, ELISA, and flow cytometry to evaluate the survival, function and phenotype of cells, respectively. We employed mice transgenic for the identified miRs to determine the biological impact of miR-17-92 expression in T cells.ResultsOur initial miR microarray analyses revealed that the miR-17-92 cluster is one of the most significantly over-expressed miR in murine Th1 cells when compared with Th2 cells. RT-PCR confirmed that the miR-17-92 cluster expression was consistently higher in Th1 cells than Th2 cells. Disruption of the IL-4 signaling through either IL-4 neutralizing antibody or knockout of signal transducer and activator of transcription (STAT)6 reversed the miR-17-92 cluster suppression in Th2 cells. Furthermore, T cells from tumor bearing mice and glioma patients had decreased levels of miR-17-92 when compared with cells from non-tumor bearing counterparts. CD4+ T cells derived from miR-17-92 transgenic mice demonstrated superior type-1 phenotype with increased IFN-γ production and very late antigen (VLA)-4 expression when compared with counterparts derived from wild type mice. Human Jurkat T cells ectopically expressing increased levels of miR-17-92 cluster members demonstrated increased IL-2 production and resistance to activation-induced cell death (AICD).ConclusionThe type-2-skewing tumor microenvironment induces the down-regulation of miR-17-92 expression in T cells, thereby diminishing the persistence of tumor-specific T cells and tumor control. Genetic engineering of T cells to express miR-17-92 may represent a promising approach for cancer immunotherapy.

Collaboration


Dive into the Gary Kohanbash's collaboration.

Top Co-Authors

Avatar

Hideho Okada

University of California

View shared research outputs
Top Co-Authors

Avatar

Mitsugu Fujita

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego Carrera

University of California

View shared research outputs
Top Co-Authors

Avatar

Manish K. Aghi

University of California

View shared research outputs
Top Co-Authors

Avatar

Ian F. Pollack

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ryo Ueda

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Diaz

University of California

View shared research outputs
Top Co-Authors

Avatar

Brian Ahn

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge