Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary Lanigan is active.

Publication


Featured researches published by Gary Lanigan.


Gcb Bioenergy | 2012

Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon

Axel Don; Bruce Osborne; Astley Hastings; U. Skiba; Mette S. Carter; Julia Drewer; Heinz Flessa; Annette Freibauer; Niina Hyvönen; Michael Jones; Gary Lanigan; Ülo Mander; Andrea Monti; Sylvestre Njakou Djomo; John Valentine; Katja Walter; Walter Zegada-Lizarazu; Terenzio Zenone

Bioenergy from crops is expected to make a considerable contribution to climate change mitigation. However, bioenergy is not necessarily carbon neutral because emissions of CO2, N2O and CH4 during crop production may reduce or completely counterbalance CO2 savings of the substituted fossil fuels. These greenhouse gases (GHGs) need to be included into the carbon footprint calculation of different bioenergy crops under a range of soil conditions and management practices. This review compiles existing knowledge on agronomic and environmental constraints and GHG balances of the major European bioenergy crops, although it focuses on dedicated perennial crops such as Miscanthus and short rotation coppice species. Such second‐generation crops account for only 3% of the current European bioenergy production, but field data suggest they emit 40% to >99% less N2O than conventional annual crops. This is a result of lower fertilizer requirements as well as a higher N‐use efficiency, due to effective N‐recycling. Perennial energy crops have the potential to sequester additional carbon in soil biomass if established on former cropland (0.44 Mg soil C ha−1 yr−1 for poplar and willow and 0.66 Mg soil C ha−1 yr−1 for Miscanthus). However, there was no positive or even negative effects on the C balance if energy crops are established on former grassland. Increased bioenergy production may also result in direct and indirect land‐use changes with potential high C losses when native vegetation is converted to annual crops. Although dedicated perennial energy crops have a high potential to improve the GHG balance of bioenergy production, several agronomic and economic constraints still have to be overcome.


Plant Physiology | 2008

Carbon Isotope Fractionation during Photorespiration and Carboxylation in Senecio

Gary Lanigan; Nicholas Betson; Howard Griffiths; Ulli Seibt

The magnitude of fractionation during photorespiration and the effect on net photosynthetic 13C discrimination (Δ) were investigated for three Senecio species, S. squalidus, S. cineraria, and S. greyii. We determined the contributions of different processes during photosynthesis to Δ by comparing observations (Δobs) with discrimination predicted from gas-exchange measurements (Δpred). Photorespiration rates were manipulated by altering the O2 partial pressure (pO2) in the air surrounding the leaves. Contributions from 13C-depleted photorespiratory CO2 were largest at high pO2. The parameters for photorespiratory fractionation (f), net fractionation during carboxylation by Rubisco and phosphoenolpyruvate carboxylase (b), and mesophyll conductance (gi) were determined simultaneously for all measurements. Instead of using Δobs data to obtain gi and f successively, which requires that b is known, we treated b, f, and gi as unknowns. We propose this as an alternative approach to analyze measurements under field conditions when b and gi are not known or cannot be determined in separate experiments. Good agreement between modeled and observed Δ was achieved with f = 11.6‰ ± 1.5‰, b = 26.0‰ ± 0.3‰, and gi of 0.27 ± 0.01, 0.25 ± 0.01, and 0.22 ± 0.01 mol m−2 s−1 for S. squalidus, S. cineraria, and S. greyii, respectively. We estimate that photorespiratory fractionation decreases Δ by about 1.2‰ on average under field conditions. In addition, diurnal changes in Δ are likely to reflect variations in photorespiration even at the canopy level. Our results emphasize that the effects of photorespiration must be taken into account when partitioning net CO2 exchange of ecosystems into gross fluxes of photosynthesis and respiration.


Plant Physiology | 2008

Bundle Sheath Leakiness and Light Limitation during C4 Leaf and Canopy CO2 Uptake

Johannes Kromdijk; Hans E. Schepers; Fabrizio Albanito; Nuala Fitton; Faye Carroll; Michael Jones; John Finnan; Gary Lanigan; Howard Griffiths

Perennial species with the C4 pathway hold promise for biomass-based energy sources. We have explored the extent that CO2 uptake of such species may be limited by light in a temperate climate. One energetic cost of the C4 pathway is the leakiness (ϕ) of bundle sheath tissues, whereby a variable proportion of the CO2, concentrated in bundle sheath cells, retrodiffuses back to the mesophyll. In this study, we scale ϕ from leaf to canopy level of a Miscanthus crop (Miscanthus × giganteus hybrid) under field conditions and model the likely limitations to CO2 fixation. At the leaf level, measurements of photosynthesis coupled to online carbon isotope discrimination showed that leaves within a 3.3-m canopy (leaf area index = 8.3) show a progressive increase in both carbon isotope discrimination and ϕ as light decreases. A similar increase was observed at the ecosystem scale when we used eddy covariance net ecosystem CO2 fluxes, together with isotopic profiles, to partition photosynthetic and respiratory isotopic flux densities (isofluxes) and derive canopy carbon isotope discrimination as an integrated proxy for ϕ at the canopy level. Modeled values of canopy CO2 fixation using leaf-level measurements of ϕ suggest that around 32% of potential photosynthetic carbon gain is lost due to light limitation, whereas using ϕ determined independently from isofluxes at the canopy level the reduction in canopy CO2 uptake is estimated at 14%. Based on these results, we identify ϕ as an important limitation to CO2 uptake of crops with the C4 pathway.


Plant Cell and Environment | 2010

On the 13C/12C isotopic signal of day and night respiration at the mesocosm level.

Guillaume Tcherkez; Rudi Schäufele; Salvador Nogués; Clément Piel; Arnoud Boom; Gary Lanigan; Cécile Barbaroux; Catarina Mata; Sliman Elhani; Debbie Hemming; Christina Maguas; Dan Yakir; Franz W. Badeck; Howard Griffiths; Hans Schnyder; Jaleh Ghashghaie

While there is currently intense effort to examine the (13)C signal of CO(2) evolved in the dark, less is known on the isotope composition of day-respired CO(2). This lack of knowledge stems from technical difficulties to measure the pure respiratory isotopic signal: day respiration is mixed up with photorespiration, and there is no obvious way to separate photosynthetic fractionation (pure c(i)/c(a) effect) from respiratory effect (production of CO(2) with a different delta(13)C value from that of net-fixed CO(2)) at the ecosystem level. Here, we took advantage of new simple equations, and applied them to sunflower canopies grown under low and high [CO(2)]. We show that whole mesocosm-respired CO(2) is slightly (13)C depleted in the light at the mesocosm level (by 0.2-0.8 per thousand), while it is slightly (13)C enriched in darkness (by 1.5-3.2 per thousand). The turnover of the respiratory carbon pool after labelling appears similar in the light and in the dark, and accordingly, a hierarchical clustering analysis shows a close correlation between the (13)C abundance in day- and night-evolved CO(2). We conclude that the carbon source for respiration is similar in the dark and in the light, but the metabolic pathways associated with CO(2) production may change, thereby explaining the different (12)C/(13)C respiratory fractionations in the light and in the dark.


PLOS ONE | 2011

Measured and Simulated Nitrous Oxide Emissions from Ryegrass- and Ryegrass/White Clover-Based Grasslands in a Moist Temperate Climate

Dejun Li; Gary Lanigan; J. Humphreys

There is uncertainty about the potential reduction of soil nitrous oxide (N2O) emission when fertilizer nitrogen (FN) is partially or completely replaced by biological N fixation (BNF) in temperate grassland. The objectives of this study were to 1) investigate the changes in N2O emissions when BNF is used to replace FN in permanent grassland, and 2) evaluate the applicability of the process-based model DNDC to simulate N2O emissions from Irish grasslands. Three grazing treatments were: (i) ryegrass (Lolium perenne) grasslands receiving 226 kg FN ha−1 yr−1 (GG+FN), (ii) ryegrass/white clover (Trifolium repens) grasslands receiving 58 kg FN ha−1 yr−1 (GWC+FN) applied in spring, and (iii) ryegrass/white clover grasslands receiving no FN (GWC-FN). Two background treatments, un-grazed swards with ryegrass only (G–B) or ryegrass/white clover (WC–B), did not receive slurry or FN and the herbage was harvested by mowing. There was no significant difference in annual N2O emissions between G–B (2.38±0.12 kg N ha−1 yr−1 (mean±SE)) and WC-B (2.45±0.85 kg N ha−1 yr−1), indicating that N2O emission due to BNF itself and clover residual decomposition from permanent ryegrass/clover grassland was negligible. N2O emissions were 7.82±1.67, 6.35±1.14 and 6.54±1.70 kg N ha−1 yr−1, respectively, from GG+FN, GWC+FN and GWC-FN. N2O fluxes simulated by DNDC agreed well with the measured values with significant correlation between simulated and measured daily fluxes for the three grazing treatments, but the simulation did not agree very well for the background treatments. DNDC overestimated annual emission by 61% for GG+FN, and underestimated by 45% for GWC-FN, but simulated very well for GWC+FN. Both the measured and simulated results supported that there was a clear reduction of N2O emissions when FN was replaced by BNF.


Global Change Biology | 2014

Interannual variation in nitrous oxide emissions from perennial ryegrass/white clover grassland used for dairy production

William E. Burchill; Dejun Li; Gary Lanigan; Micheal J A Williams; J. Humphreys

Nitrous oxide (N2O) emissions are subject to intra- and interannual variation due to changes in weather and management. This creates significant uncertainties when quantifying estimates of annual N2O emissions from grazed grasslands. Despite these uncertainties, the majority of studies are short-term in nature (<1 year) and as a consequence, there is a lack of data on interannual variation in N2O emissions. The objectives of this study were to (i) quantify annual N2O emissions and (ii) assess the causes of interannual variation in emissions from grazed perennial ryegrass/white clover grassland. Nitrous oxide emissions were measured from fertilized and grazed perennial ryegrass/white clover grassland (WC) and from perennial ryegrass plots that were not grazed and did not receive N input (GB), over 4 years from 2008 to 2012 in Ireland (52°51′N, 08°21′W). The annual N2O-N emissions (kg ha−1; mean ± SE) ranged from 4.4 ± 0.2 to 34.4 ± 5.5 from WC and from 1.7 ± 0.8 to 6.3 ± 1.2 from GB. Interannual variation in N2O emissions was attributed to differences in annual rainfall, monthly (December) soil temperatures and variation in N input. Such substantial interannual variation in N2O emissions highlights the need for long-term studies of emissions from managed pastoral systems.


Scientific Reports | 2015

Confirmation of co-denitrification in grazed grassland

Diana R. Selbie; Gary Lanigan; Ronald J. Laughlin; Hong J. Di; James L. Moir; K. C. Cameron; Tim J. Clough; Catherine J. Watson; James Grant; Cathal Somers; Karl G. Richards

Pasture-based livestock systems are often associated with losses of reactive forms of nitrogen (N) to the environment. Research has focused on losses to air and water due to the health, economic and environmental impacts of reactive N. Di-nitrogen (N2) emissions are still poorly characterized, both in terms of the processes involved and their magnitude, due to financial and methodological constraints. Relatively few studies have focused on quantifying N2 losses in vivo and fewer still have examined the relative contribution of the different N2 emission processes, particularly in grazed pastures. We used a combination of a high 15N isotopic enrichment of applied N with a high precision of determination of 15N isotopic enrichment by isotope-ratio mass spectrometry to measure N2 emissions in the field. We report that 55.8 g N m−2 (95%, CI 38 to 77 g m−2) was emitted as N2 by the process of co-denitrification in pastoral soils over 123 days following urine deposition (100 g N m−2), compared to only 1.1 g N m−2 (0.4 to 2.8 g m−2) from denitrification. This study provides strong evidence for co-denitrification as a major N2 production pathway, which has significant implications for understanding the N budgets of pastoral ecosystems.


Plant and Soil | 2010

Slurry 15NH4-N recovery in herbage and soil: effects of application method and timing.

N. J. Hoekstra; Stan Lalor; Karl G. Richards; Norma O’Hea; Gary Lanigan; Jens Dyckmans; R.P.O. Schulte; Olaf Schmidt

The effects of slurry application method and weather conditions after application on ammonia volatilisation are well documented, however, the effect on slurry N recovery in herbage is less evident due to large variability of results. The objective of this field experiment was to determine the recovery of cattle slurry NH4-N in herbage and soil in the year of application as affected by application method (trailing shoe versus broadcast) and season of application (spring versus summer), using 15N as a tracer. In 2007 and 2008, 15N enriched slurry was applied on grassland plots. N recovery in herbage and soil during the year of application was determined. Both spring and trailing shoe application resulted in significantly higher herbage DM yields, N uptake and an increased recovery of 15NH4-N in herbage. Additionally, the recovery of slurry 15NH4-N in the soil at the end of the growing season was increased. Spring and trailing shoe application reduced the losses of slurry 15NH4-N by on average 14 and 18 percentage points, respectively, which corresponded closely to ammonia volatilisation as predicted by the ALFAM model. It was concluded that slurry N recovery in temperate pasture systems can be increased by adjusting the slurry application method or timing.


Journal of Environmental Management | 2013

A review of nitrous oxide mitigation by farm nitrogen management in temperate grassland-based agriculture

Dejun Li; Catherine J. Watson; Ming Jia Yan; Stanley T. J. Lalor; Rashid Rafique; Bernard Hyde; Gary Lanigan; Karl G. Richards; Nicholas M. Holden; J. Humphreys

Nitrous oxide (N2O) emission from grassland-based agriculture is an important source of atmospheric N2O. It is hence crucial to explore various solutions including farm nitrogen (N) management to mitigate N2O emissions without sacrificing farm profitability and food supply. This paper reviews major N management practices to lower N2O emission from grassland-based agriculture. Restricted grazing by reducing grazing time is an effective way to decrease N2O emissions from excreta patches. Balancing the protein-to-energy ratios in the diets of ruminants can also decrease N2O emissions from excreta patches. Among the managements of synthetic fertilizer N application, only adjusting fertilizer N rate and slow-released fertilizers are proven to be effective in lowering N2O emissions. Use of bedding materials may increase N2O emissions from animal houses. Manure storage as slurry, manipulating slurry pH to values lower than 6 and storage as solid manure under anaerobic conditions help to reduce N2O emissions during manure storage stage. For manure land application, N2O emissions can be mitigated by reducing manure N inputs to levels that satisfy grass needs. Use of nitrification inhibitors can substantially lower N2O emissions associated with applications of fertilizers and manures and from urine patches. N2O emissions from legume based grasslands are generally lower than fertilizer-based systems. In conclusion, effective measures should be taken at each step during N flow or combined options should be used in order to mitigate N2O emission at the farm level.


Science of The Total Environment | 2016

Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations

M.A. Harty; Patrick J. Forrestal; C.J. Watson; K.L. McGeough; R. Carolan; C. Elliot; Dominika Krol; R.J. Laughlin; Karl G. Richards; Gary Lanigan

The accelerating use of synthetic nitrogen (N) fertilisers, to meet the worlds growing food demand, is the primary driver for increased atmospheric concentrations of nitrous oxide (N2O). The IPCC default emission factor (EF) for N2O from soils is 1% of the N applied, irrespective of its form. However, N2O emissions tend to be higher from nitrate-containing fertilisers e.g. calcium ammonium nitrate (CAN) compared to urea, particularly in regions, which have mild, wet climates and high organic matter soils. Urea can be an inefficient N source due to NH3 volatilisation, but nitrogen stabilisers (urease and nitrification inhibitors) can improve its efficacy. This study evaluated the impact of switching fertiliser formulation from calcium ammonium nitrate (CAN) to urea-based products, as a potential mitigation strategy to reduce N2O emissions at six temperate grassland sites on the island of Ireland. The surface applied formulations included CAN, urea and urea with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) and/or the nitrification inhibitor dicyandiamide (DCD). Results showed that N2O emissions were significantly affected by fertiliser formulation, soil type and climatic conditions. The direct N2O emission factor (EF) from CAN averaged 1.49% overall sites, but was highly variable, ranging from 0.58% to 3.81. Amending urea with NBPT, to reduce ammonia volatilisation, resulted in an average EF of 0.40% (ranging from 0.21 to 0.69%)-compared to an average EF of 0.25% for urea (ranging from 0.1 to 0.49%), with both fertilisers significantly lower and less variable than CAN. Cumulative N2O emissions from urea amended with both NBPT and DCD were not significantly different from background levels. Switching from CAN to stabilised urea formulations was found to be an effective strategy to reduce N2O emissions, particularly in wet, temperate grassland.

Collaboration


Dive into the Gary Lanigan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Osborne

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Rachel E. Creamer

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge